
IE 495 Lecture 9

September 26, 2000

Reading for This Lecture

� Primary

� Horowitz and Sahni, Chapter 2, Section 2

Basic Data Structures

What is a data structure?

� Data structures are schemes for organizing and storing
sets.

� Data structures make it easy to perform certain set
operations.

� Examples of set operations.

� add

� delete

� find_min

� delete_min

� union

Choosing the right data structure

� Data structures consist of

� a scheme for storing the set(s), and

� algorithms for performing the desired operations

� Hence, each set operation has an associated complexity

� To choose a data structure, you should know

� something about the elements of the set, and

� what operations you will want to perform on the set.

Example: Lists

� A list is a finite sequence of elements drawn from a set

� List operations

� insert()

� delete()

� concatenate()

� split()

� List storage

� array

� linked list

Linked Lists

Item
1

Item
1

Item
1

Item
1

Item
1

NAME NEXT

0

1

2

3

4

5

1

3

0

4

2

0

-

Item 1

Item 2

Item 3

Item 4

Empty

Linked List Operations

NAME NEXT

0

1

2

3

4

5

1

3

0

5

2

4

-

Item 1

Item 2

Item 3

Item 4

New Item

NAME NEXT

0

1

2

3

4

5

1

5

0

0

2

4

-

Item 1

Item 2

Empty

Item 4

Item 5

INSERT DELETE

Linked List Analysis

� make_list(a1, a2, ..., an)

� insert(a, i)

� delete(i)

� concatenate(ptr1, ptr2)

� split(ptr1, i)

Data structures in algorithms

� Typically, data structures are part of a larger algorithm.

� In order to choose a data structure, you should also know
something about the algorithm.

� The data structure should be efficient for the operations
that will be performed most often.

� The same algorithm can have different running times
using different data structures.

Arrays vs. Linked Lists

� Linked lists

� Efficient to add, delete, concatenate, split.

� Don't have to know the number of data items in advance.

� Arrays

� Less storage space.

� Fewer memory allocations.

� More efficient to locate ith data item.

� Can do hybrid schemes

Using lists

� Insertion sort

� Merge sort/quick sort

� Binary search

� Circular lists

� Doubly linked lists

Graph Data Structures

� Recall: Graph consists of

� A set of nodes or vertices V.

� A set of edges E ⊆ V × V.

� Adjacency matrix

� Efficient for determining whether a particular edge is present.

� Requires O(|V|2) storage and initialization time.

� Adjacency lists

� Usually the method of choice.

� More efficient for sparse graphs.

Stacks

� A list data structure in which insertions and deletions are
made at one end is called a stack.

� This is also known as a Last In First Out (LIFO) list.

� Insert and delete operations are often called push and
pop.

� Stack Data Structures

� Array

� Linked list

� Stacks can be used to keep track of data in recursion
(stack frames).

Stack Frames

� Local data for each function call is stored on the stack.

� Each function gets a stack frame to store data.

� space for local variables.

� pointers to the parameters the function was called with.

� pointer to the instruction to return to in the calling function.

� pointer to the localtion to store the return value.

Stack frame for main program

Stack

Stack frame for function that called A

Stack frame for function A

Queues

� A queue is a list in which insertions take place at one
end and deletions at the other.

� Also known as First In First Out (FIFO) lists.

� Queue data structures

� Array

� Circular array

� Linked list

Priority Queues

� A queue where each item has a specified priority.

� Additional operations for priority queues

� find_min()

� delete_min()

� Applications

� sorting

� greedy algorithms

� We will discuss these in future lectures

Graph Terminology

� Given a directed graph G = (V, E), we define

� a path is a sequence of edges (v
1
, v

2
), (v

2
, v

3
), ... , (v

n-1
, v

n
).

� such a path is said to go from vertex 1 to vertex n.

� A path is simple if no two edges on the path share a common
endpoint, with the exception that we allow v

1
 = v

n
.

� A simple path in which v1 = vn is called a cycle.

� A directed graph with no cycles is called a directed acyclic
graph.

� For vertex w, the number of edges (v, w) in G is called the in-
degree of w.

� Simlarly for out-degree.

Trees

� A (directed) tree is a directed acylic graph satisfying the
following:

� There is exactly one vertex called the root with in-degree 0.

� Every other vertex has in-degree 1.

� There is a path from the root node to every other node.

� Trees also have a natural recursive definition.

� Tree terminology

� If (u, v) ∈ E, then u is called the father / mother / parent of v
and v is called the son / daughter of u.

� If there is a path from u to v, then v is a descendant of u and u
is an ancestor of v.

More Tree Terminology

� A tree in which each node has out-degree 0, 1, or 2 is
called a binary tree.

� A tree in which the sons are ordered is called an ordered
tree.

� In an ordered binary tree, the two sons are usually called
the left son and the right son.

� The depth or level of a vertex v is the length of the
(unique) path from the root to v.

� The depth of a tree is the maximum depth of any node.

Trees and data structures

� Trees are an element of many different data structures.

� Trees are naturally associated with recursive and divide
and conquer type algorithms.

� We have already seen how trees can help us partition the
elements of a set.

� Tree storage

� arrays

� pointers

Traversing a Tree

� Many common algorithms involve traversing or
searching a tree.

� Traversal schemes

� preorder

� postorder

� depth-first

� breadth-first

