|E 495 Lecture 8

September 21, 2000

Reading for This Lecture

* Primary
- AHU, Chapter 2
e Secondary
- Horowitz and Sahni, Chapter 2, Section 1

Parallel Algorithm Design

Review from last lecture

Design Issues

Platform/Architecture
Task Decomposition

Task Mapping/Scheduling
Communication Protocol

Platforms

* High Performance Parallel Computers
— Massively parallel
- Distributed

e "Off the shelf" Parallel Computers

— Small shared memory servers
- Virtual parale computers

Approaches to Task Decomposition

* Fine-grained parallelism
— Suited for massively parallel systems (many small processors)
- These are the algorithms we've primarily talked about so far .

e Course-grained parallelism

— Suited to small numbers of more powerful processors.
- Data decomposition

* Recursion/Divide and Conquer
* Domain Decomposition

- Functional parallelism
» Data Dependency Analysis
- These algorithms are more common and easier to implement.

Approaches to Mapping

Concurrency
— Data dependency analysis
Locality

- Interconnection network
— Communication pattern

Mapping is an optimization problem.
These are very difficult to solve in general.

Communication Protocols
M essage-passing

Used primarily in distributed-memory or "hybrid"
environments.

Data is passed through explicit send and receive function
calls.

There is no explicit synchronization.

In general, thisis the most flexible and portable protocol.
PVM and MPI are the established standards.

Comunication Protocols
OpenM P/Threads

Used in shared-memory environments.
Parallelism through "threading".

Threads communicate through global memory.
Can have explicit synchronization.

OpenMP is the emerging standard.

OpenMP/Threads

Single Process

—» Global Memory

OpenMP Implementation

OpenMP is implemented through compiler directives.

User isresponsible for indicating what code segments
should be performed in parallel.

The user isaso responsible for eliminating potential
memory conflicts, etc.

The compiler isresponsible for inserting platform-
specific function calls, etc.

OpenMP Features

Capabilities are dependent on the compiler.

— Primarily used on shared-memory architectures
- Can work in distributed-memory environments (TreadM arks)

Explicit synchronization

L ocking functions

Critical regions

Private and shared variables

Using OpenMP

* Compiler directives
- parallel
- parallel for
- parallel sections
- barrier
- private
- critical
e Shared library functions

- omp_get_num_threads()
- omp_set_lock()

OpenMP Example

OpenMP Concepts and Issues

Race Conditions

— Conflicts between processes in updating data.

Deadlocks
Critical regions
Lock functions

And Now For Something
Completely Different...

Basic Data Structures

What I1s a data structure?

e Data structures are schemes for organizing and storing
sets.

e Data structures make it easy to perform certain set
operations.

 Examples of set operations.
- add
- delete
- find_min
- delete min
— union

Choosing the right data structure

e Data structures consist of

— ascheme for storing the set(s), and
— agorithms for performing the desired operations

* Hence, each set operation has an associated complexity
* To choose adata structure, you should know

— something about the elements of the set, and
- what operations you will want to perform on the set.

Example: Lists

e Alistisafinite sequence of elements drawn from a set
* List operations

- 1insert ()

- delete()

— concatenate()

- split()
e List storage

- array

- linked list

Linked Lists

Item| Item | Item Item Item

NAME NEXT

0 - 1
1 Item 1 3
2 Item 2 0
3 Item 3 4
4 ltem4 2
5 Empty 0

