
IE 495 Lecture 4

September 7, 2000



Reading for this lecture

� Primary

� Miller and Boxer, Chapters 2 and 3

� Aho, Hopcroft, and Ullman, Sections 2.5-2.9



Induction and Recursion



Mathematical Induction

� Induction is a technique for proving statements about 
consecutive integers.

� Principle of Mathematical Induction

� Let P(n) be a predicate that we want to prove TRUE for all 
positive n.

� Method:
1. Prove P(1).
2. Prove P(k) ⇒ P(k+1) ∀ k ≥ 1.

� Example: Prove 

� What does induction have to do with programming?
�

i � 1

n
i � n n

�
1

2



Recursion

� Definition (Mathematics): An expression, each term of 
which is determined by application of a formula to the 
preceding terms.

� In CS, a function that calls itself is called recursive.

� Recursion allows us to process large data sets based on 
our knowledge of smaller ones.

� The correctness and complexity of recursive algorithms 
can be proven by induction.

� Example: The factorial function.



Analyzing Recursive Algorithms

� For recursive algorithms, running times can also be 
defined recursively.

� Example:

T(0) = 1
T(n) = T(n-1) + 1

� What is T(n)?

� In general, we have something like T(n) = aT(n/b - c) + 
f(n).



Example: Binary Search

� This example is in Miller and Boxer, p.37



Divide and Conquer

� A common approach is to divide the problem into 
smaller parts and solve each part independently.

� In this case, our recurrence relation looks like

T(n) = S(n) + aT(n/b) + C(n)

� S(n) = time to split

� C(n) = time to combine



Example: Merge Sort

� This example is in Miller and Boxer, p. 41



Balancing

� When splitting, it usually makes sense to split in such a 
way that the two resulting subproblems are of 
approximately equal size.

� If not, the recurrence relation may not hold, and 
efficiency will decrease.

� However, balancing is is not always easy to do.

� Improper balancing can cause problems for parallel 
algorithms (more on this later).



Example: Multiplying n-bit numbers

� This example is in AHU, p. 62.



The Master Theorem

� The Master Theorem can help solve some common 
recurrence relations.

� See Miller and Boxer, Chapter 3.



Implications for Parallelism

� Recursive algorithms have natural parallel 
formaulations.

� Split the problem until there is one part per processor.

� Perform a sequential algorithm on each part in parallel.

� Combine the results.

� Must be cognizant of the overhead involved in splitting 
and combining (this is also true in sequential 
algorithms).


