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Reading for This Lecture

� Primary

� Miller and Boxer, Pages 124-128

� Forsythe and Mohler, Sections 1 and 2



Numerical Algorithms



Numerical Analysis

� So far, we have looked primarily at algorithms for 
discrete problems.

� Now we will consider problems from continuous 
mathematics.

� Numerical analysis is the study of algorithms for these 
problems.

� The main difference between the two areas is that in 
continuous mathematics, numbers must be approximated 
in general.



Problems and Algorithms

� A problem is a map from f: X → Y, where X and Y are 
normed vector spaces.

� A numerical algorithm is a procedure which calculates 
F(x) 

�

 Y, an approximation of f(x).

� A numerical algorithm does not necessatily have to be 
finite.

� Some algorithms converge (hopefully quickly) to the 
true solution "in the limit".



Conditioning

� A problem is well-conditioned if x′ ≈ x ⇒ f(x′) ≈ f(x).

� Otherwise, it is ill-conditioned.

� Notice that well-conditioned requires all small 
perturbations to have a small effect.

� Ill-conditioned only requires some small perturbation to 
have a large effect.

� Condition number of a problem

� Absolute

� Relative



Stability

� An algorithm is stable if F(x) ≈ f(x′) for some x′ ≈ x.

� This says that a stable algorithm conputes "nearly the 
right answer" to "nearly the right question".

� Notice the contrast between conditioning and stability:

� Conditioning applies to problems.

� Stability applies to algorithms.



Accuracy

� Stability plus good conditioning implies accuracy.

� If a stable algorithm is applied to a well-conditioned 
problem, then F(x) ≈ f(x).

� Conversely, if a problem is ill-conditioned, an accurate 
solution may not be possible or even meaningful.

� We cannot ask more of an algorithm than stability.



Examples

� Addition, subtraction, multiplication, division.

� Addition, multiplication, division with positive numbers are 
well-conditioned problems.

� Subtraction is not.

� Zeros of a quadratic equation

� The problem of computing the two roots is well-conditioned.

� However, the quadratic formula is not a stable algorithm.

� Solving systems of linear equations Ax = b.

� Conditioning depends on the matrix A. 



Floating-point Arithmetic

� The floating-point numbers F are a subset of the real 
numbers.

� For a real number x, let fl(x) ∈ F denote the floating 
point approximation to x.

� Let 

�

 and �  represent the four floating point and exact 
arithmetic operations. 

� Typically, there is a number u << 1 called machine 
epsilon, such that

� fl(x) = x(1 + ε) for some ε with | ε | ≤ u.

� ∀a, b ∈ F, a 

�

 b = (a �  b)(1 + ε) for some ε with | ε | ≤ u.



Stability of Floating Point Arithmetic

� Floating point arithmetic is stable for computing sums, 
products, quotients, and differences of two numbers.

� Sequences of these operations can be unstable however.

� Example

� Assume 10 digit precision

� (10-10 + 1) - 1 = 0

� 10-10 + (1 - 1) = 10-10

� Floating point operations are not always associative.



More Bad Example

� Calculating e-a with a > 0 by Taylor Series.

� The round-off error is approximately u times the largest partial 
sum.

� Calculating ea and then taking its inverse gives a full-precision 
answer

� Roots of a quadratic (ax2 + bx + c)

� If x
1
 ≈ 0 and x

2
 >> 0, then the quadratic formula is unstable.

� Computing x
2
 by the quadratic formula and then setting x

1
 = 

cx
2 
/ a is stable.



Backward Error Analysis

� Backward error analysis is a method of analyzing round-
off error and assessing stability.

� We want to show that the result of a floating-point 
operation has the same effect as if the original data had 
been perturbed by an amount in O(u).

� If we can show this, then the algorithm is stable.



More examples

� Matrix factorization

� Generally ill-conditioned.

� There are stable algorithms, however.

� Zeros of a polynomial

� Generally ill-conditioned.

� Eigenvalues of a matrix

� For a symmetric matrix, finding eigenvalues is well-
conditioned, finding eigenvectors is ill-conditioned.

� For non-symmetric matrices, both are ill-conditioned.

� In all cases, there are stable algorithms.


