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Reading for this lecture

� Primary

� Miller and Boxer, Chapter 5

� Aho, Hopcroft, and Ullman, Chapter 1

� Fountain, Chapter 4

� Secondary

� Roosta, Chapter 2

� Cosnard and Trystram, Chapters 4



Interconnection Networks



Aside: Introduction to Graphs

� A graph G = (V, E) is defined by two sets, a finite, 
nonempty set V of vertices (or nodes) and a set E ⊆ V × 
V of edges.

� Example: A road network.

� The edges can be either ordered pairs or unordered pairs.

� If the edges are ordered pairs, then they are usually 
called arcs and the graph is called a directed graph.

� Otherwise, the graph is called undirected.

� See AHU, Section 2.3



(Undirected) Graph Terms

� Vertices u and v  are endpoints of the edge (u, v).

� We say an edge e = (u, v) is incident to its endpoints.

� Two vertices u and v  are adjacent if (u, v)∈E.

� The degree of a vertex is the number of edges incident to 
it (equivalently, the number of vertices adjacent to it).

� A path is a sequence of edges (v
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n
)

� The length of such a path is n-1.

� Often, we represent a path simply as a sequence of 
vertices.



Applications of Graph Theory

� Graph theory is a very rich subject area

� Sample Applications

� Shortest Path Problem

� Minimum Spanning Tree

� Traveling Salesman Problem



What is an interconnection network?

� A graph (directed or undirected)

� The nodes are the processors

� The edges represent direct connections

� Properties and Terms

� Degree of the Network

� Communication Diameter

� Bisection Width

� Processor Neighborhood

� Connectivity Matrix

� Adjacency Matrix



Measures of Goodness

� Communication diameter: The maximum shortest path 
between two processors.

� Bisection width: The minimum cut such that the two 
resulting sets of processors have the same order of 
magnitude.

� Connectivity Matrix

� Adjacenecy Matrix



Connectivity Matrices
Example 1
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Connectivity Matrices
Example 2
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2-step Connectivity Matrices
Example 2
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N-step Connectivity Matrices

� Indicates the processor pairs that can reach each other in  
N steps

� Computed using Boolean matrix multiplication

� The corresponding adjacency matrix indicates how many 
disjoint paths connect each pair.
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Linear Array
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Mesh
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Tree
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Other Schemes

� Pyramid: A 4-ary tree where each level is connected as a 
mesh

� Hypercube: Two processors are connected if and only if 
their ID #'s differ in exactly one bit.

� Low communications diameter

� High bisection width

� Doesn't have constant degree

� Perfect Shuffle: Processor i is connected one-way to 
processor 2i mod(N-1).

� Others: Star, De Bruijn, Delta, Omega, Butterfly



Models of Computation



Analysis of Algorithms

� We are interested in the time and space needed to 
perform an algorithm.

� There are several ways of approaching this analysis.

� Worst case

� Average case

� Best case

� Worst case is the most common type of analysis (why?).

� Generally speaking, time is the most constraining 
resource.



Random Access Machine Model
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A RAM Program

� At each time step, one elementary operation is 
completed.

� Sample list of elementary operations

- LOAD

- STORE

- ADD

- SUB

- MULT

- DIV

- READ

- WRITE

- JUMP

- JGTZ

- JZERO

- HALT


