
IE 495 Lecture 19

November 2, 2000

Reading for This Lecture

� Primary

� Horowitz and Sahni, Chapter 8

� Grama and Kumar, Parallel Search Algorithms...

Parallel Branch and Bound

� Divide and conquer approach

� "Obvious" approach to parallelization

� Parallelize recursive version

� What are the problems with this?

� How does this compare to other divide and conquer
algorithms (such as merge sort)?

A Better Approach

� Master-slave model

� Master process maintains

� a priority queue of nodes

� a pool of slave processes to process the nodes

� Whenever a slave finishes processing a node, the master
determines its next course of action

� keep one (or more) of the children

� get a completely new node

Performance Measures

� Overall running time

� Measures of overhead/redundant work

� Size of search tree

� Average time to process a node

� Measures of idle time

� Time slaves spend waiting for work

� Percentage load of tree manager

Scalability Issues

� Master process will become a bottleneck

� This could result in idle time for the slaves

� Slaves could end up performing unnecessary work

� Upper bounds not available as quickly

� Memory usage not distributed -- tree stored centrally

� Run-up time

A Decentralized Model

� Use a crowd computation model.

� Divide the problem into subproblems.

� Each process solves its assigned subproblem.

� What are the problems with this?

Load Balancing

� There are two types of load balancing needed

� Quantitative

� Each processor must have enough work to do

� Qualitative

� Each processor must have "important" work to do

� Global information is needed to make good load
balancing decisions.

� We must make a compromise.

New Approaches

� Try to maintain as much global information as possible
without creating bottlenecks.

� Hierarchical schemes

� Increased grain size

� Shared memory

� Completely decentralize

� Processes periodically give away some of their best nodes to
neighbors.

� Processes request work from each other when they need it.

� Processes check the quality of their nodes against each other.

Implementing Parallel B and B

� Data structures needed

� Representation of state

� Representation subproblems

� Representation of search tree

� Master-slave model

� Need a priority queue (easy)

� Store tree centrally (efficient)

� Crowd computation model

� Still need to store everything and have some sort of priority
queue, but how?

Shameless Plug

� SYMPHONY (Single- or Multi- Process Optimization
over Networks) is an object-oriented framework for
implementing parallel branch and cut.

� User supplies some subroutines that are specific to the
problem-setting

� The remainder (about 90% of the work) is taken care of
by SYMPHONY

� Can be easily used to solve a wide variety of discrete
optimization problems.

