|E 495 Lecture 17/

October 26, 2000

Reading for This Lecture

* Primary
— Horowitz and Sahni, Chapter 8

Search Algorithms

Integer Knapsack Problem

We are given n objects.
Each object has aweight w. and a profit p.

We also have a knapsack with capacity M.
Objective: Fill the knapsack as profitably as possible.

We do not allow fractional objects.
Thisis an NP-compl ete problem.

Exact Solution Method

* \We cannot hope for a polynomial-time algorithm for this
problem.

e How do we solve it?

e \What isthe complexity?

Heuristic M ethods

* Heuristic methods derive an approximate solution
quickly (usually polynomial time).

e Heuristic for the Knapsack Problem.

* Performance guarantees.

The Bin Packing Problem

We are given a set of n items, each with asize/weight w

We are also given a set of bins of capacity C.

Bin Packing Problem: Pack the items into the smallest
number of bins possible.

The total size/weight of items assigned to each bin must
not exceed the capacity C.

This problem is NP-compl ete.

Branch and Bound Methods

* Branch and Bound is a general method that can be used
to solve many NP-complete problems.

* Components of Branch and Bound Algorithms

- Definition of the state space.

- Branching operation.

- Feasibility checking operation.
- Bounding operation.

— Search order.

Definition of the State Space

To apply branch and bound, the solution must be
expressible as an n-tuple (X, X,, ..., X) where x s chosen

from afinite set S.

A set of all possible n-tuplesisthe state space S
Knapsack Problem

Bin Packing Problem

Decisions, Feasibility, Optimization

* Feasibility problems

— A defined subset of the state space contains the "feasible"
elements.

- There are various ways to define "feasibility".
- The goal isto find one feasible element of the state space.
e Optimization problems

- We are also given an objective function f which assigns a cost
to each element of the state space.

- Wewould like to find afeasible state with the lowest cost.
* Decision problems

Branching Operation

Operation by which the original state space Is partitioned
Into at least two non-empty subproblems.

Typical branching operation
- Pick an element i of the n-tuple.

- Generate | S| subproblems by setting x to each of its possible
values in succession.

Knapsack

Bin Packing

Feasibility Checking Operation

Given a subproblem, we need to check whether it
contains any feasible solutions.

This may or may not be possible for partially defined
states.

It must be possible if the state isfully defined.
Knapsack Problem

Bin Packing Problem

Bounding Operation

If applicable, we want upper and lower bounds on the
optimal value of the current subproblem.

This may not be possible.

Upper bounds generally come from finding afeasible
solution.

Upper bounds are global

Lower bounds can come from a number of sources.
Knapsack

Bin Packing

Basic Branch and Bound Algorithm

BBound (S, U)
S ={s sisafeasible state}, U = current upper bound
If (FEASIBLE(S) == FALSE) return();
If (LBOUND(S) >=U) return(e);
If (UBOUND(S) <U) U=UBOUND(S);
If (LBOUND(S) < U)
BRANCH(S) ->S,, . . ., S,

for (i=0;i <k;i++)
if (BB(U, S) <U) U =BB(S);

return(U);

More Generally

* Associate branch and bound with a search tree.
 Maintain apriority queue of candidate subproblems.

e |terate

- Pick a subproblem from the queue and processiit.
e Check feasibility.
e Perform upper and lower bound.

- Pruneif infeasible or lower bound greater than or equal to
upper bound.

— Branch.
- Add new subproblemsto the queue.

Search Strategies
Depth First
Breadth First
Highest Lower Bound

Lowest Lower Bound

The Traveling Salesman Problem

