
IE 495 Lecture 17

October 26, 2000

Reading for This Lecture

� Primary

� Horowitz and Sahni, Chapter 8

Search Algorithms

Integer Knapsack Problem

� We are given n objects.

� Each object has a weight w
i
 and a profit p

i
.

� We also have a knapsack with capacity M.

� Objective: Fill the knapsack as profitably as possible.

� We do not allow fractional objects.

� This is an NP-complete problem.

Exact Solution Method

� We cannot hope for a polynomial-time algorithm for this
problem.

� How do we solve it?

� What is the complexity?

Heuristic Methods

� Heuristic methods derive an approximate solution
quickly (usually polynomial time).

� Heuristic for the Knapsack Problem.

� Performance guarantees.

The Bin Packing Problem

� We are given a set of n items, each with a size/weight w
i

� We are also given a set of bins of capacity C.

� Bin Packing Problem: Pack the items into the smallest
number of bins possible.

� The total size/weight of items assigned to each bin must
not exceed the capacity C.

� This problem is NP-complete.

Branch and Bound Methods

� Branch and Bound is a general method that can be used
to solve many NP-complete problems.

� Components of Branch and Bound Algorithms

� Definition of the state space.

� Branching operation.

� Feasibility checking operation.

� Bounding operation.

� Search order.

Definition of the State Space

� To apply branch and bound, the solution must be
expressible as an n-tuple (x

1
, x

2
, ..., x

n
) where x

i
 is chosen

from a finite set S
i
.

� A set of all possible n-tuples is the state space S.

� Knapsack Problem

� Bin Packing Problem

Decisions, Feasibility, Optimization

� Feasibility problems

� A defined subset of the state space contains the "feasible"
elements.

� There are various ways to define "feasibility".

� The goal is to find one feasible element of the state space.

� Optimization problems

� We are also given an objective function f which assigns a cost
to each element of the state space.

� We would like to find a feasible state with the lowest cost.

� Decision problems

Branching Operation

� Operation by which the original state space is partitioned
into at least two non-empty subproblems.

� Typical branching operation

� Pick an element i of the n-tuple.

� Generate | S
i
| subproblems by setting x

i
 to each of its possible

values in succession.

� Knapsack

� Bin Packing

Feasibility Checking Operation

� Given a subproblem, we need to check whether it
contains any feasible solutions.

� This may or may not be possible for partially defined
states.

� It must be possible if the state is fully defined.

� Knapsack Problem

� Bin Packing Problem

Bounding Operation

� If applicable, we want upper and lower bounds on the
optimal value of the current subproblem.

� This may not be possible.

� Upper bounds generally come from finding a feasible
solution.

� Upper bounds are global

� Lower bounds can come from a number of sources.

� Knapsack

� Bin Packing

Basic Branch and Bound Algorithm

BBound (S, U)

S = {s: s is a feasible state}, U = current upper bound

if (FEASIBLE(S) == FALSE) return(∞);

if (LBOUND(S) >= U) return(∞);

if (UBOUND(S) < U) U = UBOUND(S);

if (LBOUND(S) < U)

BRANCH(S) -> S
1
, . . . , S

k
;

for (i = 0; i < k; i++)
if (BB(U, S

i
) < U) U = BB(S

i
);

return(U);

More Generally

� Associate branch and bound with a search tree.

� Maintain a priority queue of candidate subproblems.

� Iterate

� Pick a subproblem from the queue and process it.

� Check feasibility.

� Perform upper and lower bound.

� Prune if infeasible or lower bound greater than or equal to
upper bound.

� Branch.

� Add new subproblems to the queue.

Search Strategies

� Depth First

� Breadth First

� Highest Lower Bound

� Lowest Lower Bound

The Traveling Salesman Problem

