
IE 495 Lecture 11

October 3, 2000

Reading for This Lecture

� Primary

� Horowitz and Sahni, Chapter 2, Section 3

� Kozen, Lectures 8-11

Binomial Trees

� The binomial tree of rank i (B
i
) is defined recursively.

� B
i
 consists of a root with i children B

0
, . . ., B

i-1
.

B
0

B
3B

2B
1

Binomial Heaps

� A binomial heap is a collection of heap ordered binomial
trees and a pointer to the overall max/min.

� No more than one tree of each rank is allowed.

� The children of each vertex are maintained in a circular
linked list.

� The basic operation is linking.

� Two trees of rank i can be combined into one tree of
rank i+1 in constant time.

Eager Meld

� We can combine two heaps by performing a meld()
reminiscent of binary addition.

� Successively link trees of equal rank and "carry" one if
necessary.

� Must track the position of the new min/max element.

� This operation takes O(log n) time.

Inserting into a Binomial Heap

� To insert() an element:

� Make a new heap from the single element to be inserted.

� Meld the new heap with the old one.

� To make_heap() from scratch, perform a sequence of
inserts.

� To delete() the min/max element:

� The children of this element form a new binomial heap.

� Meld the old heap and the new one.

Amortized Analysis

� meld() and delete() both take O(log n).

� We will use amortized analysis to show that insert()
is constant time overall.

� Idea: The total number of linking operations can never
be more than the number of insert operations.

� This means that any sequence of inserts takes constant
time on average.

