
IE 495 Lecture 10

September 28, 2000



Reading for This Lecture

� Primary

� Horowitz and Sahni, Chapter 2, Section 3



More Data Structures



Trees

� A (directed) tree is a directed acylic graph satisfying the 
following:

� There is exactly one vertex called the root with in-degree 0.

� Every other vertex has in-degree 1.

� There is a path from the root node to every other node.

� Trees also have a natural recursive definition.

� Tree terminology

� If (u, v) ∈ E, then u is called the father / mother / parent of v 
and v is called the son / daughter of u.

� If there is a path from u to v, then v is a descendant of u and u 
is an ancestor of v.



More Tree Terminology

� A tree in which each node has out-degree 0, 1, or 2 is 
called a binary tree.

� A tree in which the sons are ordered is called an ordered 
tree.

� In an ordered binary tree, the two sons are usually called 
the left son and the right son.

� The depth or level of a vertex v is the length of the 
(unique) path from the root to v.

� The depth of a tree is the maximum depth of any node.



Trees and data structures

� Trees are an element of many different data structures.

� Trees are naturally associated with recursive and divide 
and conquer type algorithms.

� We have already seen how trees can help us partition the 
elements of a set.

� Sample tree operations

� link()

� delete_node()

� add_node()



Storing a binary tree

� Arrays

� Parent of node i is stored in location i/2.

� Easy to go to a specific node.

� Can use up lots of memory if unbalanced (2l elements).

� Not efficient for some tree operations.

� Pointers

� Can be more memory efficient if unbalanced.

� Easier tree operations in some cases.



Traversing a Tree

� Many common algorithms involve traversing or 
searching a tree.

� Traversal schemes

� preorder

� postorder

� depth-first

� breadth-first



11

15141312111098

7654

32



Binary Search Tree

� A binary search tree is a binary tree satisfying

� The value stored at X is greater than the values in the left child 
and all its descendants.

� The value stored in X is less than the values in the right child 
and all its descendants.

� A binary tree can be used to easily perform binary 
search.



Heaps

� A heap is a binary tree in which the value at each node is 
at least as large as the values in each of its children.

� Hence, a largest element is always at the root.

� Heaps support the following operations

� insert()

� delete_max()

� make_heap()

� adjust_heap()

� Heaps implement a priority queue.



Inserting into a heap

� Insert the value into node n+1 and "bubble up".

� Compare the value to its parent and swap if necessary.

� Continue swapping until heap property is restored.

� One way to make a heap from n elements is to simply 
insert them one at a time.

� Analysis

� insert()

� make_heap()



Adjusting a heap

� If only the root of a heap is out of order, we can restore 
order by "bubbling down" (adjust()).

� Swap the root with the larger child.

� Continue swapping process until heap property is restored.

� Heapify (create a heap by iterative adjusting)

For each node i = n/2 → 1
adjust node i w.r.t. the subtrees rooted at its children

� Analysis



Deleting from a heap

� To delete the root node, 

� exchange node 1 with node n.

� adjust the heap.

� Heapsort

� First heapify.

� Iteratively delete the root node.

� Analysis


