|E 495 Lecture 10

September 28, 2000



Reading for This Lecture

* Primary
— Horowitz and Sahni, Chapter 2, Section 3



More Data Structures



Trees

e A (directed) treeisadirected acylic graph satisfying the
following:
- There is exactly one vertex called the root with in-degree O.
- Every other vertex has in-degree 1.
- Thereisapath from the root node to every other node.

* Treesaso have anatural recursive definition.

* Treeterminology

- If (u, v) U E, then uis called the father / mother / parent of v
and v is called the son / daughter of u.

- If thereisapath fromutov, thenv isadescendant of uand u
IS an ancestor of v.



More Tree Terminology

* A treein which each node has out-degree 0, 1, or 2 is
called abinary tree.

e A treein which the sons are ordered is called an ordered
tree.

* |nan ordered binary tree, the two sons are usually called
the left son and the right son.

* The depth or level of avertex visthelength of the
(unique) path from the root to v.

* The depth of atree isthe maximum depth of any node.



Trees and data structures

Trees are an element of many different data structures.

Trees are naturally associated with recursive and divide
and conguer type agorithms.

We have already seen how trees can help us partition the
elements of a set.

Sampl e tree operations
- link()

- delete node()

- add _node()



Storing abinary tree

* Arrays
— Parent of node is stored inlocation 0/2L]
— Easy to go to a specific node.
— Can use up lots of memory if unbalanced (2 € ements).
— Not efficient for some tree operations.

e Pointers

- Can be more memory efficient if unbalanced.
— Easier tree operations in some cases.



Traversing aTree

* Many common algorithms involve traversing or
searching atree.

e Traversa schemes

— preorder

- postorder

— depth-first
- breadth-first






Binary Search Tree

* A binary search treeisabinary tree satisfying

- The value stored at X is greater than the values in the left child
and all its descendants.

- Thevalue stored in X isless than the values in the right child
and all its descendants.

* A binary tree can be used to easily perform binary
search.



Heaps

* A heapisabinary tree in which the value at each nodeis
al least as large as the values in each of its children.

* Hence, alargest element isaways at the root.
* Heaps support the following operations

- 1nsert ()

- delete max()
- make heap()

- adjust heap()

* Heaps implement apriority queue.



Inserting into a heap

Insert the value into node n+1 and "bubble up".
Compare the value to its parent and swap if necessary.
Continue swapping until heap property is restored.

One way to make a heap from n elementsisto ssimply
Insert them one at atime.

Analysis
- 1insert ()

- make heap()



Adjusting a heap

* |f only theroot of aheap isout of order, we can restore
order by "bubbling down" (adjust ()).

- Swap the root with the larger child.
- Continue swapping process until heap property Is restored.

* Heapify (create aheap by iterative adjusting)

For each nodei = [h/2[1- 1
adjust node i w.r.t. the subtrees rooted at its children

e Analysis



Deleting from a heap

* To delete the root node,
— exchange node 1 with node n.
- adjust the heap.
* Heapsort
— Hirst heapify.
- |teratively delete the root node.
e Analysis



