
Financial Optimization
ISE 347/447

Lecture 6

Dr. Ted Ralphs



ISE 347/447 Lecture 6 1

Reading for This Lecture

• C&T Chapter 4
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Derivative Securities

• A derivative security is one whose price depends on the value of an
underlying security.

• Options are a common example of a derivative security.

• A European call option gives the holder the right to purchase a given
security at a future time (the exercise date) for a fixed price (the strike
price).

• An American call option is similar except that it allows the holder to
purchase the security anytime before expiration.

• Put options allow the holder to sell an underlying security.

• Options can be used for either speculation or hedging.

• Primarily, options are used to hedge against movements in the price of
the underlying security.
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Arbitrage

• Arbitrage is getting something for nothing. It is the fabled “free lunch.”

• More formally, there are two types of arbitrage

Definition 1. Type A arbitrage is a trading strategy that has positive
initial cash flow and nonnegative payoff under all future scenarios.

Definition 2. Type B arbitrage is a trading strategy that costs nothing
initially, has nonnegative payoff under all future scenarios and has a
strictly positive expected payoff.

• Obviously finding and exploiting arbitrage opportunities can be very
lucrative.

• Because market forces are quick to adjust, arbitrage opportunities do not
usually exist for long.
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Pricing Derivatives

• Suppose we want to buy an option. What is a fair price?

• Let’s take a very simple example involving stock XYZ.

• What we know

– The price today is 40.
– With probability p, the price in one year will be 80.
– With probability 1− p, the price in one year will be 20.

• How much should we pay for an option to buy XYZ one year from today
at a price of 50?

• To answer, we construct a portfolio of cash and the underlying security
that will have the same payoffs as the option.

• This is called replication.
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Example: Pricing Derivatives

• Suppose the risk-free rate of return is 0 and that our portfolio consists
of ∆ shares of XYZ and B dollars in cash.

• To perform the replication, we solve a system that equates the payoffs
in each of the two scenarios:

80∆ +B = 30

20∆ +B = 0

• The solution is ∆ = 1/2 and B = −10.

• Hence, the portfolio is worth 40∆ − 10 = 10 today and $10 is the fair
price of the option for one share.
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Notation

It is easy to generalize the above example. First, we need some notation.

• Let (Ω, P ) be a probability space.

• We will consider a partition of Ω into two disjoint events Ω1 and Ω2.

• We can think of Ω1 as being “the market goes up” and Ω2 being a “the
market goes down.”

• We will set p = P (Ω1) = 1− P (Ω2).

• The risk-free rate of return will r and we will set R = 1 + r.

• Si
j will denote a random variable on Ω corresponding to the price of

security i at time j.
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Generalizing

• S0 is a risk-free security with distribution

S0
0(ω) = α0, ∀ω ∈ Ω,

S0
1(ω) = RS0

0, ∀ω ∈ Ω,

• S1 is a risky security with distribution

S1
0(ω) = α1, ∀ω ∈ Ω,

S1
1(ω) =

{
uS1

0 if ω ∈ Ω1,

dS1
0 if ω ∈ Ω2.

• S2 is a European call option on S1 with distribution

S2
0(ω) = α2, ∀ω ∈ Ω,

S2
1(ω) = (S1

1(ω)−K2)+, ∀ω ∈ Ω,

where K2 is the strike price.
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Pricing the Derivative

If we assume everything but S2
0 is known, then we get the system of

equations

∆uS1
0 +BRS0

0 = Cu
1 := (uS1

0 −K2)+

∆dS1
0 +BRS0

0 = Cd
1 := (dS1

0 −K2)+

The solution is

∆ =
Cu
1−C

d
1

S1
0(u−d)

B =
uCd

1−dC
u
1

RS0
0(u−d)

Hence, we get

S2
0 =

Cu
1 − Cd

1

u− d
+
uCd

1 − dCu
1

R(u− d)
=

1

R

[
R− d
u− d

Cu
1 +

u−R
u− d

Cd
1

]
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Risk Neutral Probabilities

• Notice that in this simplified case, we must have d < R < u or there is
an arbitrage opportunity (we will see why later).

• If there is no arbitrage, then if we define

pu =
R− d
u− d

and pd =
u−R
u− d

,

we must have pu > 0, pd > 0, pu + pd = 1.

• Hence, we can interpret pu and pd as probabilities.

• We call these the risk-neutral probabilities.

• The price of any derivative security can now be interpreted as the present
value of the expected payoff with respect to the risk-neutral probabilities.

• Note that the risk-neutral probabilities are independent of the actual
probabilities.

9



ISE 347/447 Lecture 6 10

Another Interpretation

Let us again consider a risk-free asset S0 and a risky asset S1.

S0
0(ω) = 100, ∀ω ∈ Ω,

S0
1(ω) = 101 = RS0

0, ∀ω ∈ Ω,

where R is the risk-free rate over the period from time 0 to time 1.

S1
0(ω) = 100,

S1
1(ω) =

{
150R if ω ∈ Ω1,

50R if ω ∈ Ω2.

Which asset should we invest in?
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Risk Measures

• If p = 0.5, E[S0
1] = 101 = E[S1

1], i.e., the expected payoff is the same
for both assets.

• However, the risk-free asset has a sure payoff of 101, while the payoff of
asset S1 is stochastic, i.e., there is risk.

• How do we assess risk?

• Risk can be modeled as a function of the probabilities of future outcomes
(in this case p).

• A common risk measure is the variance, in this case

ρ(p) = E
[
(S1

1 − E[S1
1])2
]

= p(1− p)(100R)2.

• Note that the expected payoff for asset S1 is also a function of p:

η(p) = E[S1
1] = R(p150 + (1− p)50)
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Risk Aversion

• For investment S1 to be equally attractive as S0, it has to have a higher
return than S0 to compensate for the risk.

• To model an investor’s behavior, it is common assume that an investor
would be willing to pay

S1
0 =

η(p)− λρ(p)

R
, (1)

where λ > 0 is a risk aversion parameter.

• Division by R converts back to present value.
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Risk Measures

• In general, we do not know how investors choose their λ.

• However, they must all agree on the market price S1
0.

• This introduces a functional dependence of λ on p obtained by solving
equation (1) for λ.

λ(p) =
η(p)− S1

0R

ρ(p)
. (2)

• In other words, the price set by the market implicitly determines the
value of λ.

• All investors thus implicitly agree on a lambda.

• In our example, we find

λ(p) =
100p+ 50− S1

0

104Rp(1− p)
.
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Risk Neutral Probabilities Revisited

• Using equation (2) from the previous slide, we can determine a p∗ that
would yield λ = 0, i.e., would cause investors to be risk-neutral.

• This probability p∗ is determined by the equation

η(p)− S1
0R = 0,

which is independent of the specific risk measure ρ(p) used!

• This equation equates the expected payoffs of the risky asset with that
of the risk-free asset, as we did before.

• After a little algebra, we can get exactly the same risk-neutral
probabilities.

• Note that we did not make reference to a particular derivative security
this time.
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Using the Risk Neutral Probabilities

• Using the risk-neutral probabilities, we can price any derivative whose
payout can be expressed as a linear function of the payouts of two
underlying securities.

• The price of any such asset can be determined as the discounted expected
payoff with respect to the risk-neutral probabilities.

• It bears repeating that these “probabilities” have nothing to do with the
actual probabilities.

• They are a mathematical construction that helps to price assets.
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Back to the Example

• Let S2 be a European call option on S1 with strike price 110R at time 1.

• Such an asset yields the payoff

S2
1 = (S1

1 − 110R)+ =

{
40R if S1

1 = 150R,

0 if S1
1 = 50R.

• That is, [
S2
1(ω1)
S2
1(ω2)

]
= −0.2

[
S0
1(ω1)
S0
1(ω2)

]
+ 0.4

[
S1
1(ω1)
S1
1(ω2)

]
,

for all ω1 ∈ Ω1 and ω2 ∈ Ω2.

• Therefore,

S2
0 = R−1Ep∗[S

2
1] =

(0.5)40R+ (0.5)0

R
= 20.
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Arbitrage Opportunities

Next, consider a market in which the following three investment
opportunities are given:

S0
0(ω) = 100, ∀ω ∈ Ω

S0
1(ω) = 101 = RS0

0, ∀ω ∈ Ω,

S1
0(ω) = 100, ∀ω ∈ Ω,

S1
1(ω) =

{
120 if ω ∈ Ω1,

80 if ω ∈ Ω2,

S2
0(ω) = 100, ∀ω ∈ Ω,

S2
1(ω) =

{
110 if ω ∈ Ω1,

85 if ω ∈ Ω2.
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Arbitrage Opportunities

• Proceeding as before, for assets S1 and S2 to be acceptable investments,
we find that the equations

Si
0 =

E[Si
1]− λiσ2(Si

1)

R

have to be satisfied for i = 1, 2, i.e.,

λ1 = λ1(p), λ2 = λ2(p).

• If we fix λ1, this fixes the risk-neutral probabilities, which in turn fixes
λ2.

• In other words, the risk-aversion parameters are functionally linked and
may not be chosen independently!

• If these parameters are chosen inconsistently, this creates an arbitrage
opportunity.
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Arbitrage Opportunities

• When does there there exist p∗ ∈ (0, 1) such that λ1(p
∗) = 0 = λ2(p

∗)
jointly?

• The existence of such a p∗ implies

100 = S1
0 = R−1Ep∗[S

1
1] = R−1 (p∗120 + (1− p∗)80) ,

100 = S2
0 = R−1Ep∗[S

2
1] = R−1 (p∗110 + (1− p∗)85) .

• Solving the first equation yields p∗ = 21
40, while the second equation yields

p∗ = 16
25. Thus, λ1 and λ2 cannot be jointly zero!
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Arbitrage Opportunities

• Observe that an arbitrage opportunity exists in this market.

• Consider the portfolio S3 = 7.57S0 + 16.9S1 − 24.47S2.

• This portfolio costs nothing at time 0, since

S3
0 = 7.57S0

0 + 16.9S1
0 − 24.47S2

0 = 0,

but the value at time 1 is positive for all outcomes,

S3
1 =

{
7.57 · 101 + 16.9 · 120− 24.47 · 110 = 100.8 for ω ∈ Ω1,

7.57 · 101 + 16.9 · 80− 24.47 · 85 = 36.62 for ω ∈ Ω2.
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Arbitrage Opportunities

• The existence of a risk-neutral probability measure is intrinsically linked
to the existence of arbitrage opportunities.

• Let us now consider the more general framework of a market consisting
of n risky assets S1, . . . , Sn and a risk-free asset S0.

• The prices at time 0 are S0
0, . . . , S

n
0 for all ω ∈ Ω.

• Let Ω = ∪mj=1Ωj be a partition of Ω into m events such that the prices

at time 1 are fixed at Si
1(Ωj) for all ω ∈ Ωj, i = 0, . . . , n.

• Since S0 is risk-free, we have

S0
1(Ω1) = · · · = S0

1(Ωm) = RS0
0 (3)
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Risk-Neutral Probability Measures

Definition 3. A risk-neutral probability measure (RNPM) for the market
(S0, . . . , Sn) is a vector p = (p1, . . . , pm) > 0 such that

Si
0 = R−1

m∑
j=1

pjS
i
1(Ωj), (i = 0, . . . , n).

Note that because of (3), the constraint corresponding to i = 0 is equivalent
to

m∑
j=1

pj = 1,

which, together with p ≥ 0, means that p must be a probability measure
on Ω.
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Fundamental Theorem of Asset Pricing

Theorem 1. (Fundamental Theorem of Asset Pricing) An RNPM for the
market (S0, . . . , Sn) exists if and only if the market is arbitrage-free.

Idea of Proof: Consider the following LP,

(P) min
x

n∑
i=0

xiS
i
0

s.t.
n∑

i=0

xiS
i
1(Ωj) ≥ 0, (j = 1, . . . ,m).

Note that since x = 0 is a feasible solution, the optimal objective value
must be nonpositive.
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Proof Sketch (cont.)

• If there exists a feasible x such that

n∑
i=0

xiS
i
0 < 0,

then the portfolio
∑n

i=0 xiS
i is a type A arbitrage opportunity and (P)

is unbounded.

• If there exists a feasible x such that
∑n

i=0 xiS
i
0 = 0 and

n∑
i=0

xiS
i
1(Ωj) > 0

for at least one index j, then the portfolio
∑n

i=0 xiS
i is a type B

arbitrage opportunity.

• Thus, (P) is designed to detect arbitrage opportunities if they exist.
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Proof Sketch (cont.)

• The dual of (P) is the following LP,

(D) max
q

m∑
j=1

qj · 0

s.t.
m∑
j=1

qjS
i
1(Ωj) = Si

0, (i = 0, . . . , n),

qj ≥ 0, (j = 1, . . . ,m).

• The constraints of (D) are essentially equivalent to requiring p =
(Rq1, . . . , Rqm) to be a RNPM for the market (S0, . . . , Sn), except
the requirement p > 0 was replaced by p ≥ 0.

• So (D) is a feasibility problem that is designed to find an RNPM if one
exists.
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Proof Sketch (cont.)

Proof of the “If” part: The market is assumed to be type A arbitrage-free.
Hence,

∑n
i=0 xiS

i
0 ≥ 0 for all primal-feasible x, and since x = 0 is feasible,

it is the case that
n∑

i=0

x∗iS
i
0 = 0

for all primal-optimal x∗.

The market is also assumed to be type B arbitrage-free, so that for all
primal-optimal x∗,

n∑
i=0

x∗iS
i
1(Ωj) = 0, (j = 1, . . . ,m).
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Proof Sketch (cont.)

LP duality and strict complementarity now imply the existence of a dual-
optimal vector q∗ such that q∗j > 0 for all j. By the earlier remarks,
p∗ = Rq∗ is a RNPM.

Proof of the Only if part: If p∗ is a RNPM, then q∗ := R−1p∗ is feasible
for (D) and q > 0. By LP duality, (P) is not unbounded and the market is
therefore free from type A arbitrage.

Since q∗ > 0, strict complementarity implies that for x∗ primal optimal,∑n
i=0 x

∗
iS

i
1(Ωj) = 0 for all j. Hence, the market is type B arbitrage free.
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An LP model to Detect Type A Arbitrage

Here is an LP designed to detect Type A arbitrage

set secs; # securities in the market

param S > 1; # number of scenarios;

param current {secs}; # price at time zero

param future {secs, 1..S}; # price in each scenario

var buy {secs}; # amount of each in portfolio

minimize present_value : sum {i in secs} current[i] * buy[i];

subject to future_value {s in 1..S}:

sum {i in secs} future[i, s] * buy[i] >= 0;

This LP has an optimal value of zero if and only there is no Type A
arbitrage. It is unbounded otherwise.
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An LP model to Detect Type B Arbitrage

• There is no Type B arbitrage if and only if there is a strictly feasible
solution to the dual of the LP above.

• In practice, detecting type B arbitrage would be done by solving the
following LP:

set secs; # securities in the market

param S > 1; # number of scenarios;

param current {secs}; # price at time zero

param future {secs, 1..S}; # price in each scenario

var buy {secs}; # amount of each in portfolio

var future_values {1..S} >= 0; # future value in each scenario

maximize expected_value : sum {s in 1..S} future_values[s];

subject to current_value : sum {i in secs} current[i]*buy[i]=0;

subject to future_value {s in 1..S} :

sum {i in secs} future[i, s] * buy[i] - future_values[s] = 0;
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What Is the General Principle?

• We wrote the problem of maximizing profit subject to a guarantee of no
loss in any scenario as a mathematical program.

• Detecting type A arbitrage is then the same as determining whether this
mathematical program is unbounded.

• In the case of linear programs, duality gives us a succinct condition for
unboundedness.

• If a linear program is feasible, then it is unbounded if and only if the dual
is infeasible.

• This principal can be extended to other settings, as we will see in the
next lecture.

• The risk-neutral probabilities can be interpreted most simply as a solution
to the dual that proves the boundedness of the primal.

• This principal can be generalized in various ways.
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Asset Pricing Using the Risk Neutral Probabilities

• The Fundamental Theorem of Asset Pricing introduces a very general
notion of risk-neutral probabilities.

• As in the simple case of two scenarios and two underlying assets, we can
use the risk-neutral probabilities to price assets whose prices are linear
functions of the prices of known assets.

• The prices are again simply the discounted expected value of the asset
with respect to the risk neutral probabilities.

• This is the same as adding an extra (linearly dependent) row to the
arbitrage detection LP.

• If an asset to be added is linearly dependent on existing assets, but its
price is not not equal to the same combination of the prices of the other
assets, this makes the dual infeasible, i.e., introduces arbitrage.
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More On Arbitrage Detection

• In Lecture 6, we saw a method for detecting arbitrage opportunities in a
finite state-space setting.

• We now discuss a similar technique that applies in a continuous setting.

• Consider a portfolio

Sx :=

n∑
i=1

xiS
i

of assets Si, i = 1, . . . , n whose payoffs Si
1 are piecewise linear functions

of a single underlying asset S0
1 (not necessarily risk-free!).
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Piecewise Linear Payoffs

That is, for each i there exist breakpoints

0 < Ki
1 < Ki

2 < · · · < Ki
ki
<∞

and continuous functions Ψi : [0,∞)→∞ such that

• Ψi is a linear function on each of the intervals[
0,Ki

1

]
,
[
Ki

1,K
i
2

]
, . . .

[
Ki

ki
,∞
)
, and

• Si
1(ω) = Ψi(S0

1(ω)) for all ω ∈ Ω.
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Example: European Call Option

• Let Si be a European call option on the underlying security S0 with
strike price Ki.

• Then Si
1 = (S0

1 − Ki)+ is piecewise linear with a single breakpoint at
Ki.

• Likewise, if Si is a European put option.

• Thus, we are talking about detection of arbitrage opportunities in
portfolios of different options on the same underlying stock.
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The Portfolio Payoff Function

• When the payoff functions of each security is a piecewise linear function
of the underlying security, so is the payoff function of Sx.

Sx
1 (ω) = Ψx(S0

1(ω)) ∀ω ∈ Ω,

where

Ψx(s) =

n∑
i=1

xiΨ
i(s)

has breakpoints among the set {Ki
j : j = 1, . . . , ki; i = 1, . . . , n}.

• Let 0 < K1 < · · · < Km be these breakpoints listed in ascending order,
and let K0 := 0.
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Detecting Arbitrage

• The following optimization problem is designed to identify arbitrage
opportunities in this case, if they exist.

(P) min
x

n∑
i=1

xiS
i
0

s.t. Ψx(s) ≥ 0 ∀ s ∈ [0,∞).

• The problem is to find a minimum cost portfolio with nonegative payoff
for all realizations of S0

1.

• If there exists such a portfolio with negative cost, then an arbitrage
opportunity of type A exists, as before.

• What’s different is that (P) is not a linear programming problem because
it has infinitely many constraints!
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Reformulating

• Since Ψx is piecewise linear, the infinite set of constraints can be replaced
by a finite set.

• The constraints Ψx(s) ≥ 0 (s ≥ 0) are satisfied if and only if the
following constraints are satisfied:

Ψx(K`) ≥ 0, (` = 0, . . . ,m),

D+Ψx(Km) ≥ 0,

where D+ denotes the right-handed derivative.

• Since Ψx is linear on [Km,∞), we have

D+Ψx(Km) = Ψx(Km + 1)−Ψx(Km)
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A Linear Programming Formulation

The problem (P) can thus be reformulated as the following LP,

(P′) min
x

n∑
i=1

Si
0xi

s.t.
n∑

i=1

Ψi(0)xi ≥ 0,

n∑
i=1

Ψi(Kx
` )xi ≥ 0, (` = 1, . . . ,m),

n∑
i=1

(
Ψi(Km + 1)−Ψi(Km)

)
xi ≥ 0.

38



ISE 347/447 Lecture 6 39

Another Theorem on Asset Pricing

In analogy to the first fundamental theorem of asset pricing, LP duality can
be used to prove the following result.

Theorem 2. There is no arbitrage of type A if and only if the optimal
objective value of (P′) is zero.

Furthermore, if there is no arbitrage of type A, then there is no arbitrage of
type B if and only if the dual of (P′) has a strictly feasible solution.
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