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Reading for This Lecture

• C&T Chapter 2
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Some Conventions for Linear Optimization Problems

If not otherwise stated, the following conventions will be followed for lecture
slides during the course:

• P will denote a polyhedron contained in Rn.

• A will denote a matrix of dimension m by n.

• b will denote a vector of dimension m.

• x will denote a vector of dimension n.

• c will denote a vector of dimension n.

• P will either be defined in standard form ({x ∈ Rn|Ax = b, x ≥ 0}) or
inequality form ({x ∈ Rn|Ax ≥ b}).

• By default, we will be minimizing.
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A Quick Review of Linear Optimization

Definition 1. A polyhedron is a set of the form {x ∈ Rn|Ax ≥ b}, where
A ∈ Rm×n and b ∈ Rm.

Let P ⊆ Rn be a given polyhedron.

Definition 2. A vector x ∈ P is an extreme point of P if 6 ∃y, z ∈ P, λ ∈
(0, 1) such that x = λy + (1− λ)z.

Definition 3. A vector x ∈ P is an vertex of P if ∃c ∈ Rn such that
c>x < c>y ∀y ∈ P, x 6= y.

3



ISE 347/447 Lecture 4 4

Basic Solutions and Extreme Points

Consider a polyhedron P = {x ∈ Rn|Ax ≥ b} and let x̂ ∈ Rn be given.

Definition 4. The vector x̂ is a basic solution with respect to P if there
exist n linearly independent, binding constraints at x̂.

Definition 5. If x̂ is a basic solution and x̂ ∈ P, then x̂ is a basic feasible
solution.

Theorem 1. If P is nonempty and x̂ ∈ P, then the following are
equivalent:

• x̂ is a vertex.

• x̂ is an extreme point.

• x̂ is a basic feasible solution.
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Example

max 2x1 + 5x2

s.t. −x1 + 3.75x2 ≤ 14.375

x1 − 3.4x2 ≤ 4.8

−1.625x1 + 1.125x2 ≤ 1

3.75x1 − 1x2 ≤ 23.875

x1 + x2 ≤ 12.7

x1, x2 ≥ 0
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Example

Figure 1: Feasible region for example
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Polyhedra in Standard Form

• For the next few slides, we consider the standard form polyhedron
P = {x ∈ Rn|Ax = b, x ≥ 0}.

• The feasible region of any linear optimization problem can be expressed
equivalently in this form.

• We will assume that the rows of A are linearly independent ⇒ m ≤ n.

• What does a basic feasible solution look like here?
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Basic Feasible Solutions in Standard Form

• In standard form, the equations are always binding.

• To obtain a basic solution, we must set n −m of the variables to zero
(why?).

• We must also end up with a set of linearly independent constraints.

• Therefore, the variables we pick cannot be arbitrary.

Theorem 2. Consider a polyhedron P in standard form with m linearly
independent constraints. A vector x̂ ∈ Rn is a basic solution with respect
to P if and only if Ax̂ = b and there exist indices B(1), . . . , B(m) such
that:

• The columns AB(1), . . . , AB(m) are linearly independent, and

• If i 6= B(1), . . . , B(m), then x̂i = 0.
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Some Terminology

• If x̂ is a basic solution, then x̂B(1), . . . , x̂B(m) are the basic variables.

• The columns AB(1), . . . , AB(m) are called the basic columns.

• Since they are linearly independent, these columns form a basis for Rm.

• A set of basic columns form a basis matrix, denoted B. So we have,

B =
[
AB(1) AB(2) · · ·AB(m)

]
, xB =

 xB(1)
...

xB(m)



9



ISE 347/447 Lecture 4 10

Basic Solutions and Bases

• Given a basis matrix B, the values of the basic variables are obtained by
solving BxB = b, whose unique solution is xB = B−1b.

• However, multiple bases can give the same basic solution.

• Two bases are adjacent if they differ in only one basic column.

• Two basic solutions are adjacent if and only if they can be obtained from
two adjacent bases (proof is homework).
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Example: Basis Inverse

Basis inverse and corresponding solution when non-basic variables are s3
and s4:

[ s1 s2 s3 x1 x2 s5 s6 ]

[ 1. 0. 0. 1. -2.75 0. 0. ] [ 3.32]

[ 0. 1. 0. -0.93 2.47 0. 0. ] [ 14.10]

[ 0. 0. 1. 0.58 -0.55 0. 0. ] [ 7.89]

[ 0. 0. 0. 0.21 0.21 0. 0. ] [ 7.70]

[ 0. 0. 0. -0.21 0.79 0. 0. ] [ 5.00]

[ 0. 0. 0. 0.21 0.21 1. 0. ] [ 7.70]

[ 0. 0. 0. -0.21 0.79 0. 1. ] [ 5.00]
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Example

Figure 2: Basic solution when s3 and s4 are non-basic
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Optimality of Extreme Points

Theorem 3. Let P ⊆ Rn be a polyhedron and consider the problem
minx∈P c

>x for a given c ∈ Rn. If P has at least one extreme point and
there exists an optimal solution, then there exists an optimal solution that
is an extreme point.

• For linear optimization, a finite optimal cost is equivalent to the existence
of an optimal solution.

• The previous result can be strengthened.

• Since any linear optimization problem can be written in standard form
and all standard form polyhedra have an extreme point, we get the
following:

Theorem 4. Consider the linear optimization problem of minimizing c>x
over a nonempty polyhedron. Then, either the optimal cost is −∞ or there
exists an optimal solution.
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Iterative Search Algorithms

• Many optimization algorithms are iterative in nature.

• Geometrically, this means that they move from a given starting point to
a new point in a specified search direction.

• This search direction is calculated to be both feasible and improving.

• The process stops when we can no longer find a feasible, improving
direction.

• For linear optimization problems, it is always possible to find a feasible
improving direction if we are not at an optimal point.

• This is essentially what makes linear optimization problems “easy” to
solve.
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Feasible and Improving Directions

Definition 6. Let x̂ be an element of a polyhedron P. A vector d ∈ Rn is
said to be a feasible direction if there exists θ ∈ R+ such that x̂+ θd ∈ P.

Definition 7. Consider a polyhedron P and the associated linear
optimization problem minx∈P c

>x for c ∈ Rn. A vector d ∈ Rn is said to
be an improving direction if c>d < 0.

Notes:

• Once we find a feasible, improving direction, we want to move along that
direction as far as possible.

• Recall that we are interested in extreme points.

• The simplex algorithm moves between adjacent extreme points using
improving directions.
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Constructing Feasible Search Directions in Linear
Optimization

• Consider a BFS x̂, so that x̂N = 0.

• Any feasible direction must increase the value of at least one of the
nonbasic variables (why?).

• We will consider moving in basic directions that increase the value of
exactly one of the nonbasic variables, say variable j. This means

dj = 1

di = 0 for every nonbasic index i 6= j

• In order to remain feasible, we must also have Ad = 0 (why?), which
means

0 = Ad =

n∑
i=1

Aidi =

m∑
i=1

AB(i)dB(i)+Aj = BdB+Aj ⇒ dB = −B−1Aj
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Constructing Improving Search Directions

• Now we know how to construct feasible search directions—how do we
ensure they are improving?

• Recall that we must have c>d < 0.

Definition 8. Let x̂ be a basic solution, let B be an associated basis
matrix, and let cB be the vector of costs of the basic variables. For each
j, we define the reduced cost c̄j of variable j by

c̄j = cj − c>BB−1Aj.

• The basic direction associated with variable j is improving if and only if
c̄j < 0.

• Note that all basic variables have a reduced cost of 0 (why?).
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Optimality Conditions

Theorem 5. Consider a basic feasible solution x̂ associated with a basis
matrix B and let c̄ be the corresponding vector of reduced costs.

• If c̄ ≥ 0, then x̂ is optimal.

• If x̂ is optimal and nondegenerate, then c̄ ≥ 0.

Notes:

• The condition c̄ ≥ 0 implies there are no feasible improving directions.

• However, c̄j < 0 does not ensure the existence of an improving, feasible
direction unless the current BFS is nondegenerate

.
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The Tableau

• The tableau looks like this

−c>BB−1b c> − c>BB−1A
B−1b B−1A

• In more detail, this is

−c>BxB c̄1 · · · c̄n
xB(1)

... B−1A1 · · · B−1An

xB(m)
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Optimal Tableau in Example

Tableau and reduced costs when non-basic variables are s3 and s4:

[ 0. 0. 0. 0. 0. -0.79 -1.21 0. 0. ]

[-0. -0. 1. -0. -0. 1. -2.75 -0. -0. ] [ 3.32]

[-0. -0. -0. 1. -0. -0.93 2.47 -0. -0. ] [ 14.10]

[-0. -0. -0. -0. 1. 0.58 -0.55 -0. -0. ] [ 7.89]

[ 1. 0. 0. 0. 0. 0.21 0.21 0. 0. ] [ 7.70]

[ 0. 1. 0. 0. 0. -0.21 0.79 0. 0. ] [ 5.00]

[-0. -0. -0. -0. -0. 0.21 0.21 1. -0. ] [ 7.70]

[-0. -0. -0. -0. -0. -0.21 0.79 -0. 1. ] [ 5.00]
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Example

Figure 3: Optimal basic solution for example
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Implementing the Simplex Method

“Naive” Implementation

1. Start with a basic feasible solution x̂ with indices B(1), . . . , B(m)
corresponding to the current basic variables.

2. Form the basis matrix B and compute p> = c>BB
−1 by solving p>B =

c>B.

3. Compute the reduced costs by the formula c̄j = cj − p>Aj. If c̄ ≥ 0,
then x̂ is optimal.

4. Select the entering variable j and obtain u = B−1Aj by solving the
system Bu = Aj. If u ≤ 0, the LP is unbounded.

5. Determine the step size θ∗ = min{i|ui>0}
x̂B(i)

ui
.

6. Determine the new solution and the leaving variable i.

7. Replace i with j in the list of basic variables.

8. Go to Step 1.

22



ISE 347/447 Lecture 4 23

Example: Short Term Financing Revisited

Recall our previous example. A company needs to make provisions for a
series of cash flows over a period of T months.

• The following sources of funds are available,

– Bank credit
– Issue of zero-coupon bonds
– Cash reserves in an interest-bearing account.

• How should the company finance these cash flows if no payment
obligations are to remain at the end of the period?
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Example: AMPL Model for Short Term Financing

param T > 0 integer;

param cash_flow {0..T};

param credit_rate;

param bond_yield;

param invest_rate;

var credit {-1..T} >= 0, <= 100;

var bonds {-bond_maturity..T} >= 0;

var invest {-1..T} >= 0;

maximize wealth : invest[T];

subject to balance {t in 0..T} :

credit[t] - (1 + credit_rate)* credit[t-1] +

bonds[t] - (1 + bond_yield) * bonds[t-bond_maturity] -

invest[t] + (1 + invest_rate) * invest[t-1] = cash_flow[t];

subject to initial_credit : credit[-1] = 0;

subject to final_credit : credit[T] = 0;

subject to initial_invest : invest[-1] = 0;

subject to initial_bonds {t in 1..bond_maturity}: bonds[-t] = 0;

subject to final_bonds {t in T+1-bond_maturity..T} : bonds[t] = 0;
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Example: AMPL Data for Short Term Financing

These are the data for the example in the book.

param T := 5;

param : cash_flow :=

0 150

1 100

2 -200

3 200

4 -50

5 -300;

param credit_rate := .01;

param bond_yield := .02;

param bond_maturity := 3;

param invest_rate := .003;
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Example: AMPL Data for Short Term Financing

ampl: model short_term_financing.mod;

ampl: data short_term_financing.dat;

ampl: solve;

ampl: display credit, bonds, invest;

: credit bonds invest :=

0 0 150 0

1 50.9804 49.0196 0

2 0 203.434 351.944

3 0 0 0

4 0 0 0

5 0 0 92.4969
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Example: Short Term Financing in PuLP

from pulp import LpProblem, LpVariable, lpSum, LpMaximize, value, LpStatus

from short_term_financing_data import cash_flow, credit_rate, bond_yield

from short_term_financing_data import bond_maturity, invest_rate

T = len(cash_flow)

prob = LpProblem("Short Term Financing Model", LpMaximize)

credit = LpVariable.dicts("credit", range(-1, T), 0, None)

bonds = LpVariable.dicts("bonds", range(-bond_maturity, T), 0, None)

invest = LpVariable.dicts("invest", range(-1, T), 0, None)

prob += invest[T-1]

for t in range(0, T):

prob += (credit[t] - (1 + credit_rate)* credit[t-1] +

bonds[t] - (1 + bond_yield) * bonds[t-int(bond_maturity)] -

invest[t] + (1 + invest_rate) * invest[t-1] == cash_flow[t])

prob += credit[-1] == 0

prob += credit[T-1] == 0

prob += invest[-1] == 0

for t in range(-int(bond_maturity), 0): prob += bonds[t] == 0

for t in range(T-int(bond_maturity), T): prob += bonds[t] == 0
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