Financial Optimizations
ISE 347 /447

Lecture 3

Dr. Ted Ralphs

ISE 347/447 Lecture 3

Reading for This Lecture

o AMPL Book: Chapter 1
o C&T Sections 3.1 and 3.2

ISE 347/447 Lecture 3 2

AMPL

e AMPL is one of the most commonly used modeling languages, but many
other languages, including GAMS, are similar in concept.

e AMPL has many of the features of a programming language, including
loops and conditionals.

e Most available solvers will work with AMPL.

e GMPL and ZIMPL are open source languages that implement subsets of
AMPL.

o AMPL will work CPLEX, XPRESS-MP, MOSEK, which are commercial
solvers available in the ISE department.

e AMPL can also be used with most of the solvers in COIN-OR, a repository
of open source software for operations research.

e You can also submit AMPL models to the NEOS server.
e Student versions can be downloaded from www.ampl. com.

e Finally, you will be able to use AMPL through the Excel plug-in Solver
Studio that we will use extensively.

ISE 347/447 Lecture 3

Example: Simple Bond Portfolio Model

e A bond portfolio manager has $100K to allocate to two different bonds.

Bond | Yield Maturity Rating
A 4 3 A (2)
B 3 4 Aaa (1)

e The goal is to maximize total return subject to the following limits.

— The average rating must be at most 1.5 (lower is better).

— The average maturity must be at most 3.6 years.

e Any cash not invested will be kept in a non-interest bearing account and

is assumed to have an implicit rating of 0 (no risk).

ISE 347 /447 Lecture 3

AMPL Concepts

e |In many ways, AMPL is like any other programming language.

e Example: Bond Portfolio Model

ampl:
ampl:
ampl:
ampl:
ampl:
ampl:
ampl:
ampl:
ampl:
ampl:
ampl:

ampl:

X1 =

ampl:

X2 =

option solver 0SAmplClient;
option 0SAmplClient_options "solver clp";

var X1;
var X2;

maximize yield: 4*X1 + 3*X2;

subject
subject
subject
subject
subject
solve;

display
50

display
50

to
to
to
to
to

X1;

X2;

cash: X1 + X2 <= 100;

rating: 2*xX1 + X2 <= 150;
maturity: 3*X1 + 4xX2 <= 360;
X1_limit: X1 >= O;

X2_1limit: X2 >= 0;

ISE 347/447 Lecture 3

Storing Commands in a File

e You can type the commands into a file and then load them.
e This makes it easy to modify your model later.

e Example:

ampl: option solver 0SAmplClient;

ampl: option 0SAmplClient_options "solver clp";
ampl: model bonds_simple.mod;

ampl: solve;

ampl: display X1;
X1 = 50
ampl: display X2;
X2 = 50

ISE 347/447 Lecture 3 6

Generalizing the Model

e Suppose we want to generalize this production model to more than two
products.

e AMPL allows the model to be separated from the data.
e Components of a linear optimization problem in AMPL

— Data

x Sets: lists of products, raw materials, etc.
x Parameters: numerical inputs such as costs, production rates, etc.

— Model

x Variables: Values in the model that need to be decided upon.

* Objective Function: A function of the variable values to be
maximized or minimized.

x Constraints: Functions of the variable values that must lie within
given bounds.

ISE 347 /447 Lecture 3

Example: General Bond Portfolio Model

set bonds; #

param yield {bonds};
param rating {bondsl};
param maturity {bonds};
param max_rating;

param max_maturity,
param max_cash;

H H HF H H H

var buy {bonds} >= 0; #

bonds available

yields

ratings

maturities

Maximum average rating allowed
Maximum maturity allowed
Maximum available to invest

amount to invest in bond 1

maximize total_yield : sum {i in bonds} yield[i] * buyl[il];

subject to cash_limit : sum {i in bonds} buyl[i] <= max_cash;

subject to rating_limit

sum {i in bonds} ratingl[il*buyl[i] <= max_cash*max_rating;

subject to maturity_limit

sum {i in bonds} maturity[il*buy[i] <= max_cash*max_maturity;

ISE 347 /447 Lecture 3

Example: Bond Portfolio Data

set bonds := A B;

param : yield rating maturity :=

A 4 2 3
B 3 1 4
param max_cash := 100;

param max_rating 1.5;
param max_maturity 3.6;

ISE 347 /447 Lecture 3

Solving the Model

ampl: model bonds.mod;
ampl: data bonds.dat;
ampl: solve;

ampl: display buy;
buy [*] :=

A 50

B 50

.
)

ISE 347/447 Lecture 3

10

Modifying the Data

e Suppose we want to increase available production hours by 2000.

e To resolve from scratch, simply modify the data file and reload.

ampl: reset data;
ampl: data bonds_alt.dat;
ampl: solve;

ampl: display buy;
buy [*] :=

A 30

B 70

.
)

ISE 347/447 Lecture 3

11

Modifying Individual Data Elements

e Instead of resetting all the data, you can modify one element.

ampl: reset data max_cash;

ampl: data;

ampl data: param max_cash := 150;
ampl data: solve;

ampl: display buy;
buy [*] :=

A 45

B 105

.
J

ISE 347 /447 Lecture 3

12

Extending the Model

e Now suppose we want to add another type of bond.

set bonds := A B C;

param : yield rating maturity :=

A 4 2 3

B 3 1 4

C 5 3 2;
param max_cash := 100;

param max_rating 1.5;
param max_maturity 3.6;

ISE 347 /447 Lecture 3 13

Solving the Extended Model

ampl: reset data;
ampl: data bonds_extended.dat;
ampl: solve;

ampl: display buy,;
buy [*] :=

A O

B 85

C 15

.
)

ISE 347/447 Lecture 3 14

Getting Data from a Spreadsheet

e Another obvious source of data is a spreadsheet, such as Excel.

e AMPL has commands for accessing data from a spreadsheet directly
from the language.

e An alternative is to use SolverStudio.

e SolverStudio allows the model to be composed within Excel and imports
the data from an associated sheet.

e Results can be printed to a window or output to the sheet for further
analysis.

ISE 347/447 Lecture 3 15

Further Generalization

e Note that in our AMPL model, we essentially had three “features” of a
bond that we wanted to take into account.

— Maturity
— Rating
— Yield

e \We constrained the level of two of these and then optimized the third
one.

e [he constraints for the features all have the same basic form.
e \What if we wanted to add another feature?

e We can make the list of features a set and use the concept of a
two-dimensional parameter to create a table of bond data.

ISE 347 /447 Lecture 3 16

The Generalized Model

set bonds;
set features;

param bond_data {bonds, features};

param limits{features};

param yield{bonds};

param max_cash;

var buy {bonds} >= 0;

maximize obj : sum {i in bonds} yield[i] * buyl[il];

subject to cash_limit : sum {i in bonds} buyl[i] <= max_cash;

subject to limit_constraints {f in features}:
sum {i in bonds} bond_datali, fl*buy[i] <= max_cash*limits[f];

ISE 347/447 Lecture 3 17

Simple Bond Portfolio Example in Python (PuLP)

from pulp import LpProblem, LpVariable, lpSum, LpMaximize, value
prob = LpProblem("Dedication Model", LpMaximize)

X1
X2

LpVariable("X1", O, None)
LpVariable("X2", 0, None)

prob += 4xX1 + 3*X2

prob += X1 + X2 <= 100
prob += 2xX1 + X2 <= 150
prob += 3*%X1 + 4xX2 <= 360

prob.solve()
print ’Optimal total cost is: ’, value(prob.objective)

print "X1 :", Xl.varValue
print "X2 :", X2.varValue

ISE 347/447 Lecture 3 18

Notes About the Model

e Like the simple AMPL model, we are not using indexing or any sort of
abstraction here.

e The syntax is very similar to AMPL.

e To achieve separation of data and model, we use Python's import
mechanism.

ISE 347 /447 Lecture 3 19

Bond Portfolio Example: Abstracting the PuLP Model

from pulp import LpProblem, LpVariable, lpSum, LpMaximize, value
from bonds_data import bonds, max_rating, max_maturity, max_cash
prob = LpProblem("Bond Selection Model", LpMaximize)

buy = LpVariable.dicts(’bonds’, bonds.keys(), O, None)

prob += lpSum(bonds[b] [’yield’] * buy[b] for b in bonds)

prob += 1pSum(buy[b] for b in bonds) <= max_cash, "cash"

prob += (lpSum(bonds[b] [’rating’] * buyl[b]l for b in bonds)
<= max_cash*max_rating, "ratings")

prob += (1pSum(bonds[b] [’maturity’] * buy[b] for b in bonds)
<= max_cash*max_maturity, "maturities")

ISE 347/447 Lecture 3 20

Notes About the Model

e We can use Python's native import mechanism to get the data.

e Note, however, that the data is read and stored before the model.
e This means that we don't need to declare sets and parameters.

e Carriage returns are syntactic (parentheses imply line continuation).
e Constraints

— Naming of constraints is optional and only necessary for certain kinds
of post-solution analysis.

— Constraints are added to the model using a very intuitive syntax.

— Objectives are nothing more than expressions that are to be optimized
rather than explicitly constrained.

e |ndexing

— Indexing in Python is done using the native dictionary data structure.
— Note the extensive use of comprehensions, which have a syntax very
similar to quantifiers in a mathematical model.

ISE 347/447 Lecture 3 21

Bond Portfolio Example: Solution in PuLP

prob.solve()
epsilon = .001

print ’Optimal purchases:’
for 1 in bonds:
if buylil].varValue > epsilon:
print ’Bond’, i, ":", buylil].varValue

ISE 347 /447 Lecture 3

22

Bond Portfolio Example: Data

bonds = {’A’ : {’yield’ . 4,
’rating’ 2 2,
‘maturity’ : 3,1},
B’ : {’yield’ : 3,
’rating’ -1,
‘maturity’ : 4,1},

max_cash = 100
max_rating = 1.5
max_maturity = 3.6

Import File

ISE 347/447 Lecture 3 23

Notes About the Data Import

e We are storing the data about the bonds in a “dictionary of dictionaries.”

e \With this data structure, we don't need to separately construct the list
of bonds.

e \We can access the list of bonds as bonds.keys ().

e Note, however, that we still end up hard-coding the list of features and
we must repeat this list of features for every bond.

e \We can avoid this using some advanced Python programming techniques,
but SolverStudio makes this easy.

ISE 347/447 Lecture 3 24

Bond Portfolio Example: PuLP Model in SolverStudio

buy = LpVariable.dicts(’bonds’, bonds, O, None)
for £ in features:

if sensel[f] == "Max":

prob += 1lpSum(bond_datal[b, f] * buy[b] for b in bonds)
elif sense[f] == "Max":

prob += lpSum(-bond_datalb, f] * buyl[b] for b in bonds)
elif sensel[f] == ’>’:

prob += (1lpSum(bond_datal[b, f] * buy[b] for b in bonds)
>= max_cashxlimits[f], f)
else:
prob += (1lpSum(bond_datalb, f] * buy[b] for b in bonds)
<= max_cash*xlimits[f], f)
prob += lpSum(buy[b] for b in bonds) <= max_cash, "cash"

status = prob.solve()

ISE 347/447 Lecture 3

Notes About the SolverStudio PuLP Model

25

o We've explicitly allowed the option of optimizing over one of the features,
while constraining the others.

o Later, we'll see how to create tradeoff curves showing the tradeoffs
among the constraints imposed on various features.

ISE 347/447 Lecture 3 26

Portfolio Dedication

Definition 1. Dedication or cash flow matching refers to the funding of
known future liabilities through the purchase of a portfolio of risk-free
non-callable bonds.

Notes:

e Dedication is used to eliminate interest rate risk.
e Dedicated portfolios do not have to be managed.

e The goal is to construct such portfolio at a minimal price from a set of
available bonds.

ISE 347/447 Lecture 3 27

Example: Portfolio Dedication

e A pension fund faces liabilities totalling ¢; for years j =1,...,7T"

e The fund wishes to dedicate these liabilities via a portfolio comprised of
n different types of bonds.

e Bond type 7 costs c¢;, matures in year j;, and vyields a yearly coupon
payment of d; up to maturity.

e The principal paid out at maturity for bond 7 is p;.

ISE 347/447 Lecture 3 28

Example: LP Formulation

We assume that for each year j there is at least one type of bond 7 with
maturity j; = j, and there are none with 5, > T

Let z; be the number of bonds of type 7 purchased, and let z; be the cash
on hand at the beginning of year j for = 0,...,T. Then the dedication
problem is the following LP,

min zg + g CiT;
(x,2) .
1

s.t. Zj_l—Zj—l— Z dzxz+ Z pia:izﬁj, (]Il,,T—l)

{i:3;>7} {i:ji=7}
Zr—1 + Z (pi + di)x; = L.
{i:g; =T}

2;>0,j=1,...,T
513220,’&:1,,77,

ISE 347 /447 Lecture 3 29

Portfolio Dedication Model

Here is the model for the portfolio dedication example.

set bonds;

param T > O integer;

param liabilities {1..T+1};
param price {bonds};

param maturity {bonds};
param coupon {bonds};

param principal {bonds};
var buy {bonds} >= 0;

var cash {0..T} >= 0;

bonds available for purchase
Years in the planning horizon
Liabilities by year

The cost of each bond type
Bond maturities

The coupon payment amounts
Principal paid at maturity
Number of bonds to buy

Cash at beginning of year j

H OH H H HE H H H H

minimize total_cost : cash[0] + sum {i in bonds} pricelil*buyli];

subject to cash_balance {t in 1..T}: cash[t-1] - cash[t] +
sum{i in bonds : maturity[i] >= t} coupon[i] * buyl[i] +
sum{i in bonds : maturityl[i] = t} principalli] * buyl[i] =
liabilities[t];

ISE 347 /447 Lecture 3

Portfolio Dedication Data

set bonds := ABCDEVFGHTI J;
param T := 8;

param := liabilities :=
1 12000 2 18000
3 20000 4 20000
5 16000 6 15000
7 12000 3 10000;
param := price coupon principal maturity :=
A 102 5 100 1
B 99 3.5 100 2
C 101 5 100 2
D 98 3.5 100 3
E 98 4 100 4
F 104 9 100 5
G 100 6 100 5
H 101 3 100 6
I 102 9 100 7
J 94 7 100 3;

ISE 347/447 Lecture 3 31

Software for Linear Optimization

e Caveat: What follows includes only linear solvers. We will look at
nonlinear solvers a little later.

e Commercial solvers

— CPLEX <« available in ISE

— XPRESS-MP <« available in ISE
— Gurobi + Free for student use
— MOSEK

— LINDO

— Excel SOLVER

e Open source solvers (free to download and use)

— CLP
— DYLP
— GLPK

— SOPLEX
— Ip_solve

ISE 347/447 Lecture 3 32
Computational Infrastructure for Operations Research
(COIN-OR)

e COIN-OR is an open source project dedicated to the development of
open source software for solving operations research problems.

e COIN-OR distributes a free and open source suite of software that can
handle all the classes of problems we'll discuss.

— Clp (LP)

— Chc (MILP)

— lpopt (NLP)

— SYMPHONY (MILP, BMILP)

— Bonmin (Convex MINLP)

— Couenne (Nonconvex MINLP)

— Optimization Services (Interface)

e COIN also develops standards and interfaces that allow software
components to interoperate.

e We will be using COIN software frequently throughout the semester.

http://www.coin-or.org

ISE 347 /447 Lecture 3 33

Using COIN-OR with AMPL

Install the 0SAmplClient.

Type the following options in AMPL:

ampl: option solver 0SAmplClient;
ampl: option O0SAmplClient_options '"solver clp";
The solver can be any of the above, except for Bonmin (coming soon).

It is even possible to solve problems remotely and we may try this at
some point.

ISE 347/447 Lecture 3

34

Other Modeling Languages

o OPL

— OPL Studio is a modeling IDE available in the ISE department.
— The model format is similar to AMPL.

e GAMS

— Another modeling language like AMPL.
— Also available in ISE.

e GMPL

— Another language very similar to AMPL.
— Works with GLPK, CLP, and SYMPHONY.

e PuLP/Pyomo

— Python-based modeling languages.
— Similar in concept to AMPL but with the full power of Python.

