
Financial Optimizations
ISE 347/447

Lecture 3

Dr. Ted Ralphs

ISE 347/447 Lecture 3 1

Reading for This Lecture

• AMPL Book: Chapter 1

• C&T Sections 3.1 and 3.2

1

ISE 347/447 Lecture 3 2

AMPL

• AMPL is one of the most commonly used modeling languages, but many
other languages, including GAMS, are similar in concept.

• AMPL has many of the features of a programming language, including
loops and conditionals.

• Most available solvers will work with AMPL.

• GMPL and ZIMPL are open source languages that implement subsets of
AMPL.

• AMPL will work CPLEX, XPRESS-MP, MOSEK, which are commercial
solvers available in the ISE department.

• AMPL can also be used with most of the solvers in COIN-OR, a repository
of open source software for operations research.

• You can also submit AMPL models to the NEOS server.

• Student versions can be downloaded from www.ampl.com.

• Finally, you will be able to use AMPL through the Excel plug-in Solver
Studio that we will use extensively.

2

ISE 347/447 Lecture 3 3

Example: Simple Bond Portfolio Model

• A bond portfolio manager has $100K to allocate to two different bonds.

Bond Yield Maturity Rating
A 4 3 A (2)
B 3 4 Aaa (1)

• The goal is to maximize total return subject to the following limits.

– The average rating must be at most 1.5 (lower is better).
– The average maturity must be at most 3.6 years.

• Any cash not invested will be kept in a non-interest bearing account and
is assumed to have an implicit rating of 0 (no risk).

3

ISE 347/447 Lecture 3 4

AMPL Concepts

• In many ways, AMPL is like any other programming language.

• Example: Bond Portfolio Model

ampl: option solver OSAmplClient;

ampl: option OSAmplClient_options "solver clp";

ampl: var X1;

ampl: var X2;

ampl: maximize yield: 4*X1 + 3*X2;

ampl: subject to cash: X1 + X2 <= 100;

ampl: subject to rating: 2*X1 + X2 <= 150;

ampl: subject to maturity: 3*X1 + 4*X2 <= 360;

ampl: subject to X1_limit: X1 >= 0;

ampl: subject to X2_limit: X2 >= 0;

ampl: solve;

...

ampl: display X1;

X1 = 50

ampl: display X2;

X2 = 50

4

ISE 347/447 Lecture 3 5

Storing Commands in a File

• You can type the commands into a file and then load them.

• This makes it easy to modify your model later.

• Example:

ampl: option solver OSAmplClient;

ampl: option OSAmplClient_options "solver clp";

ampl: model bonds_simple.mod;

ampl: solve;

...

ampl: display X1;

X1 = 50

ampl: display X2;

X2 = 50

5

ISE 347/447 Lecture 3 6

Generalizing the Model

• Suppose we want to generalize this production model to more than two
products.

• AMPL allows the model to be separated from the data.

• Components of a linear optimization problem in AMPL

– Data

∗ Sets: lists of products, raw materials, etc.
∗ Parameters: numerical inputs such as costs, production rates, etc.

– Model

∗ Variables: Values in the model that need to be decided upon.
∗ Objective Function: A function of the variable values to be

maximized or minimized.
∗ Constraints: Functions of the variable values that must lie within

given bounds.

6

ISE 347/447 Lecture 3 7

Example: General Bond Portfolio Model

set bonds; # bonds available

param yield {bonds}; # yields

param rating {bonds}; # ratings

param maturity {bonds}; # maturities

param max_rating; # Maximum average rating allowed

param max_maturity; # Maximum maturity allowed

param max_cash; # Maximum available to invest

var buy {bonds} >= 0; # amount to invest in bond i

maximize total_yield : sum {i in bonds} yield[i] * buy[i];

subject to cash_limit : sum {i in bonds} buy[i] <= max_cash;

subject to rating_limit :

sum {i in bonds} rating[i]*buy[i] <= max_cash*max_rating;

subject to maturity_limit :

sum {i in bonds} maturity[i]*buy[i] <= max_cash*max_maturity;

7

ISE 347/447 Lecture 3 8

Example: Bond Portfolio Data

set bonds := A B;

param : yield rating maturity :=

A 4 2 3

B 3 1 4;

param max_cash := 100;

param max_rating 1.5;

param max_maturity 3.6;

8

ISE 347/447 Lecture 3 9

Solving the Model

ampl: model bonds.mod;

ampl: data bonds.dat;

ampl: solve;

...

ampl: display buy;

buy [*] :=

A 50

B 50

;

9

ISE 347/447 Lecture 3 10

Modifying the Data

• Suppose we want to increase available production hours by 2000.

• To resolve from scratch, simply modify the data file and reload.

ampl: reset data;

ampl: data bonds_alt.dat;

ampl: solve;

...

ampl: display buy;

buy [*] :=

A 30

B 70

;

10

ISE 347/447 Lecture 3 11

Modifying Individual Data Elements

• Instead of resetting all the data, you can modify one element.

ampl: reset data max_cash;

ampl: data;

ampl data: param max_cash := 150;

ampl data: solve;

...

ampl: display buy;

buy [*] :=

A 45

B 105

;

11

ISE 347/447 Lecture 3 12

Extending the Model

• Now suppose we want to add another type of bond.

set bonds := A B C;

param : yield rating maturity :=

A 4 2 3

B 3 1 4

C 5 3 2;

param max_cash := 100;

param max_rating 1.5;

param max_maturity 3.6;

12

ISE 347/447 Lecture 3 13

Solving the Extended Model

ampl: reset data;

ampl: data bonds_extended.dat;

ampl: solve;

..

ampl: display buy;

buy [*] :=

A 0

B 85

C 15

;

13

ISE 347/447 Lecture 3 14

Getting Data from a Spreadsheet

• Another obvious source of data is a spreadsheet, such as Excel.

• AMPL has commands for accessing data from a spreadsheet directly
from the language.

• An alternative is to use SolverStudio.

• SolverStudio allows the model to be composed within Excel and imports
the data from an associated sheet.

• Results can be printed to a window or output to the sheet for further
analysis.

14

ISE 347/447 Lecture 3 15

Further Generalization

• Note that in our AMPL model, we essentially had three “features” of a
bond that we wanted to take into account.

– Maturity
– Rating
– Yield

• We constrained the level of two of these and then optimized the third
one.

• The constraints for the features all have the same basic form.

• What if we wanted to add another feature?

• We can make the list of features a set and use the concept of a
two-dimensional parameter to create a table of bond data.

15

ISE 347/447 Lecture 3 16

The Generalized Model

set bonds;

set features;

param bond_data {bonds, features};

param limits{features};

param yield{bonds};

param max_cash;

var buy {bonds} >= 0;

maximize obj : sum {i in bonds} yield[i] * buy[i];

subject to cash_limit : sum {i in bonds} buy[i] <= max_cash;

subject to limit_constraints {f in features}:

sum {i in bonds} bond_data[i, f]*buy[i] <= max_cash*limits[f];

16

ISE 347/447 Lecture 3 17

Simple Bond Portfolio Example in Python (PuLP)

from pulp import LpProblem, LpVariable, lpSum, LpMaximize, value

prob = LpProblem("Dedication Model", LpMaximize)

X1 = LpVariable("X1", 0, None)

X2 = LpVariable("X2", 0, None)

prob += 4*X1 + 3*X2

prob += X1 + X2 <= 100

prob += 2*X1 + X2 <= 150

prob += 3*X1 + 4*X2 <= 360

prob.solve()

print ’Optimal total cost is: ’, value(prob.objective)

print "X1 :", X1.varValue

print "X2 :", X2.varValue

17

ISE 347/447 Lecture 3 18

Notes About the Model

• Like the simple AMPL model, we are not using indexing or any sort of
abstraction here.

• The syntax is very similar to AMPL.

• To achieve separation of data and model, we use Python’s import

mechanism.

18

ISE 347/447 Lecture 3 19

Bond Portfolio Example: Abstracting the PuLP Model

from pulp import LpProblem, LpVariable, lpSum, LpMaximize, value

from bonds_data import bonds, max_rating, max_maturity, max_cash

prob = LpProblem("Bond Selection Model", LpMaximize)

buy = LpVariable.dicts(’bonds’, bonds.keys(), 0, None)

prob += lpSum(bonds[b][’yield’] * buy[b] for b in bonds)

prob += lpSum(buy[b] for b in bonds) <= max_cash, "cash"

prob += (lpSum(bonds[b][’rating’] * buy[b] for b in bonds)

<= max_cash*max_rating, "ratings")

prob += (lpSum(bonds[b][’maturity’] * buy[b] for b in bonds)

<= max_cash*max_maturity, "maturities")

19

ISE 347/447 Lecture 3 20

Notes About the Model

• We can use Python’s native import mechanism to get the data.

• Note, however, that the data is read and stored before the model.

• This means that we don’t need to declare sets and parameters.

• Carriage returns are syntactic (parentheses imply line continuation).

• Constraints

– Naming of constraints is optional and only necessary for certain kinds
of post-solution analysis.

– Constraints are added to the model using a very intuitive syntax.
– Objectives are nothing more than expressions that are to be optimized

rather than explicitly constrained.

• Indexing

– Indexing in Python is done using the native dictionary data structure.
– Note the extensive use of comprehensions, which have a syntax very

similar to quantifiers in a mathematical model.

20

ISE 347/447 Lecture 3 21

Bond Portfolio Example: Solution in PuLP

prob.solve()

epsilon = .001

print ’Optimal purchases:’

for i in bonds:

if buy[i].varValue > epsilon:

print ’Bond’, i, ":", buy[i].varValue

21

ISE 347/447 Lecture 3 22

Bond Portfolio Example: Data Import File

bonds = {’A’ : {’yield’ : 4,

’rating’ : 2,

’maturity’ : 3,},

’B’ : {’yield’ : 3,

’rating’ : 1,

’maturity’ : 4,},

}

max_cash = 100

max_rating = 1.5

max_maturity = 3.6

22

ISE 347/447 Lecture 3 23

Notes About the Data Import

• We are storing the data about the bonds in a “dictionary of dictionaries.”

• With this data structure, we don’t need to separately construct the list
of bonds.

• We can access the list of bonds as bonds.keys().

• Note, however, that we still end up hard-coding the list of features and
we must repeat this list of features for every bond.

• We can avoid this using some advanced Python programming techniques,
but SolverStudio makes this easy.

23

ISE 347/447 Lecture 3 24

Bond Portfolio Example: PuLP Model in SolverStudio

buy = LpVariable.dicts(’bonds’, bonds, 0, None)

for f in features:

if sense[f] == "Max":

prob += lpSum(bond_data[b, f] * buy[b] for b in bonds)

elif sense[f] == "Max":

prob += lpSum(-bond_data[b, f] * buy[b] for b in bonds)

elif sense[f] == ’>’:

prob += (lpSum(bond_data[b, f] * buy[b] for b in bonds)

>= max_cash*limits[f], f)

else:

prob += (lpSum(bond_data[b, f] * buy[b] for b in bonds)

<= max_cash*limits[f], f)

prob += lpSum(buy[b] for b in bonds) <= max_cash, "cash"

status = prob.solve()

24

ISE 347/447 Lecture 3 25

Notes About the SolverStudio PuLP Model

• We’ve explicitly allowed the option of optimizing over one of the features,
while constraining the others.

• Later, we’ll see how to create tradeoff curves showing the tradeoffs
among the constraints imposed on various features.

25

ISE 347/447 Lecture 3 26

Portfolio Dedication

Definition 1. Dedication or cash flow matching refers to the funding of
known future liabilities through the purchase of a portfolio of risk-free
non-callable bonds.

Notes:

• Dedication is used to eliminate interest rate risk.

• Dedicated portfolios do not have to be managed.

• The goal is to construct such portfolio at a minimal price from a set of
available bonds.

26

ISE 347/447 Lecture 3 27

Example: Portfolio Dedication

• A pension fund faces liabilities totalling `j for years j = 1, ..., T .

• The fund wishes to dedicate these liabilities via a portfolio comprised of
n different types of bonds.

• Bond type i costs ci, matures in year ji, and yields a yearly coupon
payment of di up to maturity.

• The principal paid out at maturity for bond i is pi.

27

ISE 347/447 Lecture 3 28

Example: LP Formulation

We assume that for each year j there is at least one type of bond i with
maturity ji = j, and there are none with ji > T .

Let xi be the number of bonds of type i purchased, and let zj be the cash
on hand at the beginning of year j for j = 0, . . . , T . Then the dedication
problem is the following LP,

min
(x,z)

z0 +
∑
i

cixi

s.t. zj−1 − zj +
∑
{i:ji≥j}

dixi +
∑
{i:ji=j}

pixi = `j, (j = 1, . . . , T − 1)

zT−1 +
∑

{i:ji=T}

(pi + di)xi = `T .

zj ≥ 0, j = 1, . . . , T

xi ≥ 0, i = 1, . . . , n

28

ISE 347/447 Lecture 3 29

Portfolio Dedication Model

Here is the model for the portfolio dedication example.

set bonds; # bonds available for purchase

param T > 0 integer; # Years in the planning horizon

param liabilities {1..T+1}; # Liabilities by year

param price {bonds}; # The cost of each bond type

param maturity {bonds}; # Bond maturities

param coupon {bonds}; # The coupon payment amounts

param principal {bonds}; # Principal paid at maturity

var buy {bonds} >= 0; # Number of bonds to buy

var cash {0..T} >= 0; # Cash at beginning of year j

minimize total_cost : cash[0] + sum {i in bonds} price[i]*buy[i];

subject to cash_balance {t in 1..T}: cash[t-1] - cash[t] +

sum{i in bonds : maturity[i] >= t} coupon[i] * buy[i] +

sum{i in bonds : maturity[i] = t} principal[i] * buy[i] =

liabilities[t];

29

ISE 347/447 Lecture 3 30

Portfolio Dedication Data

set bonds := A B C D E F G H I J;

param T := 8;

param := liabilities :=

1 12000 2 18000

3 20000 4 20000

5 16000 6 15000

7 12000 8 10000;

param := price coupon principal maturity :=

A 102 5 100 1

B 99 3.5 100 2

C 101 5 100 2

D 98 3.5 100 3

E 98 4 100 4

F 104 9 100 5

G 100 6 100 5

H 101 8 100 6

I 102 9 100 7

J 94 7 100 8;

30

ISE 347/447 Lecture 3 31

Software for Linear Optimization

• Caveat: What follows includes only linear solvers. We will look at
nonlinear solvers a little later.

• Commercial solvers

– CPLEX ← available in ISE
– XPRESS-MP ← available in ISE
– Gurobi ← Free for student use
– MOSEK
– LINDO
– Excel SOLVER

• Open source solvers (free to download and use)

– CLP
– DYLP
– GLPK
– SOPLEX
– lp solve

31

ISE 347/447 Lecture 3 32

Computational Infrastructure for Operations Research
(COIN-OR)

• COIN-OR is an open source project dedicated to the development of
open source software for solving operations research problems.

• COIN-OR distributes a free and open source suite of software that can
handle all the classes of problems we’ll discuss.

– Clp (LP)
– Cbc (MILP)
– Ipopt (NLP)
– SYMPHONY (MILP, BMILP)
– Bonmin (Convex MINLP)
– Couenne (Nonconvex MINLP)
– Optimization Services (Interface)

• COIN also develops standards and interfaces that allow software
components to interoperate.

• We will be using COIN software frequently throughout the semester.

http://www.coin-or.org

32

ISE 347/447 Lecture 3 33

Using COIN-OR with AMPL

• Install the OSAmplClient.

• Type the following options in AMPL:

ampl: option solver OSAmplClient;

ampl: option OSAmplClient_options "solver clp";

• The solver can be any of the above, except for Bonmin (coming soon).

• It is even possible to solve problems remotely and we may try this at
some point.

33

ISE 347/447 Lecture 3 34

Other Modeling Languages

• OPL

– OPL Studio is a modeling IDE available in the ISE department.
– The model format is similar to AMPL.

• GAMS

– Another modeling language like AMPL.
– Also available in ISE.

• GMPL

– Another language very similar to AMPL.
– Works with GLPK, CLP, and SYMPHONY.

• PuLP/Pyomo

– Python-based modeling languages.
– Similar in concept to AMPL but with the full power of Python.

34

