Financial Optimization ISE 347/447

Lecture 24

Dr. Ted Ralphs

Reading for This Lecture

• C&T Chapter 17

Risk Measures

• Arisk measure ρ , as formally defined in the literature, is just a real-valued funtion of a random variable (not a very useful definition).

- The random variable we are primarily interested in is the random vector of returns of a given portfolio.
- Intuitively, the risk measure can be thought of as the opposite of a "utility function."
- With utility, bigger is better; with risk, smaller is better.
- To make intuitive sense, the function should have certain properties, including
 - Monotonicity: $Y \ge X \Rightarrow \rho(Y) \le \rho(X)$ (adding more assets to one's portfolio should not increase risk).
 - Convexity: $\rho((1-\lambda)X + \lambda Y) \leq (1-\lambda)\rho(X) + \lambda \rho(Y)$ (the risk of two separate portfolios is at least as much as the risk of one combined portfolio).
- It is also intuitive that a risk measure should not be "symmetric" (the disutility of a loss does not equal the utility of a similar gain).
- Note that a "risk measure" may not only be an evaluation of the risk in the intuitive way we think of it.

Value at Risk (VaR)

• The only risk measure we have considered so far is the variance of the return of a given portfolio.

- This measure is convex, but is not monotonic and is also symmetric.
- Value at risk is a risk measure developed at J.P.Morgan, which is in wide-spread use across the finance industry.
- VaR_{α} is defined as the smallest level of loss for which the probability of experiencing a loss above this level is smaller than 1α .
- In other words, the loss will exceed VaR_{α} with probability at most $1-\alpha$.
- This measure is "asymmetric," since it is only positive when there is a loss.
- Let us now define this notion more formally.

Definitions

- Consider an investment decision represented by the vector $x \in \mathbb{R}^n$.
- Let the "loss" over an investment period under the outcome $\omega \in \Omega$ be $L(x,\omega)$.
- For fixed x, the loss function $L(x,\cdot)$ is a random variable that takes positive values when a loss is incurred, and negative ones when a gain occurs.
- \bullet For any fixed value of x let

$$\Psi(x,\gamma) := P[L(x,\cdot) \le \gamma] = F_{L(x,\cdot)}(\gamma)$$

be the cumulative distribution function of the loss function $L(x,\cdot)$ associated with holding the investment x.

Definitions (cont.)

For any $\alpha \in [0,1]$ (typically, $\alpha = .95$ is chosen), the value at risk on the confidence level α is defined by

$$\mathrm{VaR}_{lpha}(x) := \min_{\gamma \in \mathbb{R}} \, \gamma$$
 s.t. $\Psi(x,\gamma) \geq lpha.$

- ullet Since Ψ is typically a nonlinear function, computing the value at risk is a nonlinear programming problem.
- Note that if the loss function is continuous, then $VaR_{\alpha}(x)$ is such that

$$\Psi(x, \operatorname{VaR}_{\alpha}(x)) = \alpha$$

Example 1

• A set of risky assets S^1, \ldots, S^n have multivariate normal returns $R \sim N(\mu, Q)$ over the investment period [0, 1].

- Suppose we want to find the portfolio x^* that minimizes the value at risk on the confidence level α .
- If the total value of the invested capital is w, then the loss incurred by the portfolio x over the investment period is $-wR^{\top}x$.
- Therefore, we have to solve a *bilevel* optimization problem (see next slide).

Portfolio Optimization with VaR

(VM1)
$$x^* = \arg\min_{x \in \mathbb{R}^n} \operatorname{VaR}_{\alpha}(x)$$
 s.t. $Ax \ge a, \ Bx = b,$

where the objective function

$$\operatorname{VaR}_{\alpha}(x) = \min_{\gamma \in \mathbb{R}} \gamma$$
 s.t.
$$\int_{\{r: -wr^{\top}x \leq \gamma\}} \frac{\exp\left\{-\frac{1}{2}(r-\mu)^{\top}Q^{-1}(r-\mu)\right\}}{\sqrt{(2\pi)^{n}\det(Q)}} \, dr \geq \alpha$$

is itself the optimal solution to an optimization problem.

Example 2

• The return vector R of a set of risky assets S^1, \ldots, S^n takes the values $r^1, \ldots, r^k \in \mathbb{R}^n$ with probability 1/k each.

• Find the vector x^* of relative wealth allocation weights that minimizes the value at risk on the confidence level α .

(VM2)
$$x^* = \arg\min_{x \in \mathbb{R}^n} \operatorname{VaR}_{\alpha}(x)$$
 s.t. $Ax \ge a, \ Bx = b,$

with

$$\operatorname{VaR}_{\alpha}(x) = \min_{\gamma \in \mathbb{R}} \gamma$$
s.t.
$$\sum_{\{i: -wx^{\top}r^{i} \leq \gamma\}} \frac{1}{k} \geq \alpha.$$

Drawbacks

 VaR_{α} -minimization has a number of serious drawbacks:

- The objective function VaR_{α} in Example 2 is nonlinear and nonsmooth with many local minimizers.
- Both (VM1) and (VM2) are bilevel optimization problems, which are generally computationally difficult to solve..
- VaR_{α} is not *convex*!
 - Suppose we buy two bonds for \$100 each, each of which will default with a probability of 4%.
 - $VaR_{0.95}$ is 0 for each bond independently, since the probability of losing nothing is more than 95% for each bond individually.
 - The combination of the two bonds has $VaR_{.95}$ equal to 100, however (the probability of losing nothing on either bond is $.96^2 < 0.95$).
 - So VaR_{.95} is bigger for the combination!
- VaR_{α} pays no attention to the *magnitude* of losses when the rare extremal event of experiencing a loss above the level VaR_{α} occurs.

Conditional Value at Risk (CVaR)

- To overcome this drawback, the notion of *conditional value at risk* (CVaR) has been developed.
- This is the same as *mean expected loss*, *mean shortfall*, *expected shortfall* risk and tail-VaR.
- As before, let $\alpha \in [0,1]$ be a given confidence level.
- Then we define

$$CVaR_{\alpha}(x) := \frac{1}{1 - \alpha} \int_{\{\omega: L(x,\omega) \ge VaR_{\alpha}(x)\}} L(x,\omega) P[d\omega].$$

 The intuitive basis for this definition is that when the loss function is continuous, we have

$$\text{CVaR}_{\alpha}(x) = \mathbb{E}\left[L(x,\omega) \mid L(x,\omega) \ge \text{VaR}_{\alpha}(x)\right]$$

Example 3

• A given investment generates losses of $L(j) = j - 80 \ (j = 1, ..., 100)$ each with probability 1%.

We have

$$\mathrm{VaR}_{0.95} = \min_{j=1,...,100} L(j)$$
 s.t.
$$\sum_{i=1}^{j} \frac{1}{100} \ge 0.95.$$

• The constraint is satisfied for $j = 95, \ldots, 100$. Therefore,

$$VaR_{\alpha} = \min_{j=95,...,100} (j-80) = 15.$$

The expected shortfall risk is

$$CVaR_{0.95} = \frac{1}{0.05} \sum_{j=95}^{100} \frac{j - 80}{100} = 17.5.$$

Comparing VaR and CVaR

Note that

$$CVaR_{\alpha}(x) \ge \frac{1}{1 - \alpha} \int_{\{\omega: L(x, \omega) \ge VaR_{\alpha}(x)\}} VaR_{\alpha}(x) P[d\omega]$$

$$= \frac{VaR_{\alpha}(x)}{1 - \alpha} P[L(x, \omega) \ge VaR_{\alpha}(x)]$$

$$\ge VaR_{\alpha}(x),$$

so minimizing CVaR_{α} also makes VaR_{α} small, but the opposite may not be true.

• $\text{CVaR}_{\alpha}(x)$ can now be used as a risk measure in investment decision problems that take the form

(CVM)
$$x^* = \arg\min_{x \in \mathbb{R}^n} \text{CVaR}_{\alpha}(x)$$

s.t. $x \in \mathcal{F}$,

where \mathcal{F} is some set of feasible investments defined by a set of constraints.

Comparing VaR and CVaR: Simple Example

- Suppose again that we buy two bonds for \$100 each, each of which will default with a probability of 4%.
- $CVaR_{0.95}$ is $80 = (.04 \times 100)/0.05$ for each bond independently
- The combination of the two bonds has $\text{CVaR}_{.95}$ equal to $(200 \times .04^2 + 100 \times (.05 .04^2))/.05 = 103$.
- Note that in this example, we do not have $P[L(x,\omega) \geq VaR_{\alpha}(x)] = 1-\alpha$ (we will come back to this).
- This means that the risk of the two bonds together is now less than the sum of the risks of the individual bonds (103 < 160).
- ullet In fact, we can show that $ext{CVaR}_lpha$ is both monotonic and convex.

Example 4

In Example 1, if we had proposed to find an investment that minimizes $CVaR_{\alpha}$, we would have had to solve

(CVM1)
$$x^* = \arg\min_{x \in \mathbb{R}^n} \text{CVaR}_{\alpha}(x)$$

s.t. $Ax \ge a, \ Bx = b,$

where

$$CVaR_{\alpha}(x) = \frac{-w}{1-\alpha} \int_{\{r:-wr^{\top}x \ge VaR_{\alpha}(x)\}} \frac{r^{\top}x \cdot \exp\left\{-\frac{1}{2}(r-\mu)^{\top}Q^{-1}(r-\mu)\right\}}{\sqrt{(2\pi)^{n} \det(Q)}} dr$$

and

$$\operatorname{VaR}_{\alpha}(x) = \min_{\gamma \in \mathbb{R}} \gamma$$
s.t.
$$\int_{\{r: -wr^{\top}x \leq \gamma\}} \frac{\exp\left\{-\frac{1}{2}(r-\mu)^{\top}Q^{-1}(r-\mu)\right\}}{\sqrt{(2\pi)^{n}\det(Q)}} dr \geq \alpha$$

Example 5

In Example 2, if we had proposed to find an investment that minimizes $CVaR_{\alpha}$, we would have had to solve

(CVM2)
$$x^* = \arg\min_{x \in \mathbb{R}^n} \text{CVaR}_{\alpha}(x)$$
 s.t. $Ax \geq a, \ Bx = b,$

where

$$CVaR_{\alpha}(x) = \frac{1}{|\mathcal{I}|} \sum_{i \in \mathcal{I}} -wx^{\top} r^{i},$$
$$\mathcal{I} = \{i : -wx^{\top} r^{i} \ge VaR_{\alpha}(x)\},$$

and

$$\mathrm{VaR}_{\alpha}(x) = \min_{\gamma \in \mathbb{R}} \ \gamma$$
 s.t.
$$\sum_{\{i: -wx^{\top}r^{i} \leq \gamma\}} \frac{1}{k} \geq \alpha.$$

Computing CVaR

• These examples illustrate that computing $\text{CVaR}_{\alpha}(x)$ generally requires the computation of $\text{VaR}_{\alpha}(x)$.

• This suggests that the CVaR_{α} -minimization problem

(CVM)
$$x^* = \arg\min_{x \in \mathbb{R}^n} \operatorname{CVaR}_{\alpha}(x)$$

s.t. $x \in \mathcal{F}$

might be even harder than the VaR_{α} -minimization problem

(VM)
$$x^* = \arg\min_{x \in \mathbb{R}^n} \operatorname{VaR}_{\alpha}(x)$$

s.t. $x \in \mathcal{F}$.

• It thus comes as a surprise that under quite reasonable modeling assumptions, the opposite is true.

Let $\beta(x) = P[L(x,\omega) \ge VaR_{\alpha}(x)]$ and consider the auxiliary function

$$F_{\alpha}(x,\gamma) := \gamma + \int_{\Omega} \frac{(L(x,\omega) - \gamma)_{+}}{\beta(x)} P[d\omega].$$

Theorem 1.

- i) For any fixed x, the function $\gamma \mapsto F_{\alpha}(x,\gamma)$ is convex.
- ii) $\operatorname{VaR}_{\alpha}(x)$ is a minimizer of the problem $\min_{\gamma} F_{\alpha}(x,\gamma)$.
- iii) $F_{\alpha}(x, \operatorname{VaR}_{\alpha}(x)) = \operatorname{CVaR}_{\alpha}(x)$.

<u>Proof</u>: i) Since $(L(x,\omega) - \gamma)_+$ is a convex function in γ , it is true that for any γ_1, γ_2 and $\tau \in [0,1]$,

$$F_{\alpha}(x,\tau\gamma_1+(1-\tau)\gamma_2)$$

$$\leq \tau \gamma_1 + (1 - \tau) \gamma_2$$

$$+ \int_{\Omega} \left(\tau \frac{(L(x, \omega) - \gamma_1)_+}{\beta(x)} + (1 - \tau) \frac{(L(x, \omega) - \gamma_2)_+}{\beta(x)} \right) P[d\omega]$$

$$= \tau F_{\alpha}(x, \gamma_1) + (1 - \tau)F_{\alpha}(x, \gamma_2).$$

This shows that $F_{\alpha}(x,\gamma)$ is convex in γ .

ii) Since the problem of minimizing $F_{\alpha}(x,\gamma)$ with respect to γ is convex, the KKT conditions are sufficient for optimality, i.e., we only need to check that the $F_{\alpha}(x,\gamma)$ is stationary at $\gamma = \mathrm{VaR}_{\alpha}(x)$.

For any set $S \subset \Omega$ let χ_S be the associated indicator function

$$\chi_{\mathcal{S}}(\omega) = \begin{cases} 1 & \text{if } \omega \in \mathcal{S}, \\ 0 & \text{otherwise.} \end{cases}$$

With this notation we have

$$\frac{\partial}{\partial \gamma} F_{\alpha}(x, \operatorname{VaR}_{\alpha}(x)) = 1 - \int_{\Omega} \frac{\chi_{\{\omega: L(x,\omega) \ge \operatorname{VaR}_{\alpha}(x)\}}(\omega)}{\beta(x)} \operatorname{P}[d\omega]$$
$$= 1 - \frac{\operatorname{P}[L(x,\omega) \ge \operatorname{VaR}_{\alpha}(x)]}{\beta(x)} = 0$$

iii) We have

$$F_{\alpha}(x, \operatorname{VaR}_{\alpha}(x)) = \operatorname{VaR}_{\alpha}(x) + \int_{\Omega} \frac{(L(x, \omega) - \operatorname{VaR}_{\alpha}(x))_{+}}{\beta(x)} \operatorname{P}[d\omega]$$

$$= \operatorname{VaR}_{\alpha}(x) + \int_{\{\omega: L(x,\omega) \ge \operatorname{VaR}_{\alpha}(x)\}} \frac{L(x,\omega)}{\beta(x)} \operatorname{P}[d\omega]$$
$$- \operatorname{VaR}_{\alpha}(x) \frac{\operatorname{P}[L(x,\omega) \ge \operatorname{VaR}_{\alpha}(x)]}{\beta(x)}$$

$$= VaR_{\alpha}(x) + CVaR_{\alpha}(x) - VaR_{\alpha}(x).$$

Minimizing CVaR_{α}

• Theorem 1 now implies that the CVaR_{α} -minimization problem

(MCV)
$$\min_{x \in \mathbb{R}^n} \text{CVaR}_{\alpha}(x)$$

s.t. $x \in \mathcal{F}$

can be reformulated as the single-level optimization problem

(MCV')
$$\min_{(x,\gamma)\in\mathbb{R}^{n+1}}F_{\alpha}(x,\gamma)$$
 s.t. $x\in\mathcal{F}.$

- In applications, it is often the case that F_{α} is convex in x as well, and \mathcal{F} is a convex set.
- In this case (MCV') is a convex minimization problem and can generally be well solved.

Example 6

Problem (CVM1) from Example 4 is equivalent to

(CVM1')
$$\min_{x,\gamma} \gamma + \frac{1}{1-\alpha} \int_{\mathbb{R}^n} \left(-wr^\top x - \gamma \right)_+ \frac{\exp\left\{ -\frac{1}{2}(r-\mu)^\top Q^{-1}(r-\mu) \right\}}{\sqrt{(2\pi)^n \det(Q)}} dr$$

s.t. $Ax \ge a, \ Bx = b.$

- Since $(-wr^{\top}x \gamma)_+$ is convex in x, the objective function of (CVM1') is a positive combination of convex functions and hence also convex in x.
- ullet By Theorem 1 the objective function is also convex in γ .

Example 7

Problem (MCV2) from Example 5 is equivalent to

(MCV2')
$$\min_{x,\gamma} \gamma + \frac{1}{\beta(x)} \sum_{i=1}^{k} \frac{(-wx^{\top}r^{i} - \gamma)_{+}}{k}$$
 s.t. $Ax \ge a, Bx = b.$

• Since $\beta(x) \approx 1 - \alpha$, Problem (MCV2) can be approximated by the convex problem

(MCV2')
$$\min_{x,\gamma} \gamma + \frac{1}{1-\alpha} \sum_{i=1}^{k} \frac{(-wx^{\top}r^{i} - \gamma)_{+}}{k}$$
 s.t. $Ax \ge a, \ Bx = b.$

Example 7 (cont.)

• Finally, Problem (MCV2') is equivalent to the following LP,

(LMCV2')
$$\min_{x,z,\gamma} \gamma + \frac{1}{(1-\alpha)k} \sum_{i=1}^{k} z_i$$
s.t.
$$z_i \ge -wx^{\top} r^i - \gamma, \quad (i = 1, \dots, k)$$

$$Ax \ge a, \quad Bx = b,$$

$$z \ge 0,$$

- Note that we replaced a piecewise linear convex objective function by a linear objective by introducing extra variables and extra linear constraints.
- This is the same thing we did in the L-shaped method.

General Techniques

- Example 7 can be generalized to approximate any CVaR_{α} -minimization problem via LP or QP:
- For this purpose we replace the probability measure P on Ω by a finite set of equiprobable scenarios $\omega_1, \ldots, \omega_S$.
- These scenarios are typically obtained by statistical sampling.
- Next, we approximate F_{α} by

$$F_{\alpha}(x,\gamma) = \gamma + \frac{1}{(1-\alpha)S} \sum_{s=1}^{S} (L(x,\omega_s) - \gamma)_{+},$$

so that the problem (MCV) can be approximated.

Approximating

The approximation is then

(AMCV)
$$\min_{x,\gamma} \ \gamma + \frac{1}{(1-\alpha)S} \sum_{s=1}^{S} (L(x,\omega_s) - \gamma)_+$$
 s.t. $x \in \mathcal{F}.$

Introducing artificial variables to get rid of the break points of the objective function, we replace (AMCV) by the equivalent problem

(LAMCV)
$$\min_{x,z,\gamma} \ \gamma + \frac{1}{(1-\alpha)S} \sum_{i=1}^{S} z_s$$
 s.t.
$$z_s \ge 0, \quad (s=1,\ldots,S)$$

$$z_s \ge L(x,\omega_s) - \gamma, \quad (s=1,\ldots,S)$$

$$Ax \ge b.$$

Remarks

- If $L(x,\omega)$ is linear in x, then (LAMCV) is an LP.
- More generally, $L(x,\omega)$ is typically convex in x, in which case (LAMCV) is well solved via standard NLP software.
- In applications in which $L(x,\omega)$ is not convex in x, (LAMCV) is often further approximated by replacing $L(x,\omega)$ by an approximation that is convex in x.
- Typically, NLP software will do this automatically.

Further Applications

• In risk management, one is often interested in controlling the expected loss at several confidence levels.

The following model is typical,

(RM)
$$\max_{x} \ \mu^{\top} x$$

s.t. $\text{CVaR}_{\alpha_{j}}(x) \leq u_{\alpha_{j}}, \quad (j = 1, \dots, k)$
 $Ax \geq a, \quad Bx = b.$

• To control the risk of the investment x, we thus require that the conditional value at risk must not exceed thresholds u_{α_j} on the confidence levels $\alpha_1, \ldots, \alpha_k$.

Adapting the LAMCV

The reformulation of the finite scenario case can easily be adapted to such problems, which now become

(ARM)
$$\max_{x,\gamma,z} \ \mu^{\top} x$$
s.t.
$$\gamma + \frac{1}{(1-\alpha_j)S} \sum_{s=1}^{S} z_s \le U_{\alpha_j}, \quad (j=1,\dots,k)$$

$$z_s \ge 0, \quad (s=1,\dots,S)$$

$$z_s \ge L(x,\omega_s) - \gamma, \quad (s=1,\dots,S),$$

$$Ax \ge a, \quad Bx = b.$$