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Risk Measures

e Arisk measure p, as formally defined in the literature, is just a real-valued
funtion of a random variable (not a very useful definition).

— The random variable we are primarily interested in is the random
vector of returns of a given portfolio.

— Intuitively, the risk measure can be thought of as the opposite of a
“utility function.”

— With utility, bigger is better; with risk, smaller is better.

e To make intuitive sense, the function should have certain properties,
including

— Monotonicity: Y > X = p(Y) < p(X) (adding more assets to one's
portfolio should not increase risk).

— Convexity: p((1 = N)X +AY) < (1 — X)p(X) + Ap(Y) (the risk of
two separate portfolios is at least as much as the risk of one combined
portfolio).

e It is also intuitive that a risk measure should not be “symmetric” (the
disutility of a loss does not equal the utility of a similar gain).

e Note that a “risk measure” may not only be an evaluation of the risk in
the intuitive way we think of it.
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Value at Risk (VaR)

e The only risk measure we have considered so far is the variance of the
return of a given portfolio.

e This measure is convex, but is not monotonic and is also symmetric.

e Value at risk is a risk measure developed at J.P.Morgan, which is in
wide-spread use across the finance industry.

e VaR, is defined as the smallest level of loss for which the probability of
experiencing a loss above this level is smaller than 1 — a.

e |n other words, the loss will exceed VaR,, with probability at most 1 — a.

e This measure is “asymmetric,” since it is only positive when there is a
loss.

e et us now define this notion more formally.
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Definitions

e Consider an investment decision represented by the vector x € R".

e Let the “loss” over an investment period under the outcome w € (2 be
L(z,w).

e For fixed z, the loss function L(x,-) is a random variable that takes
positive values when a loss is incurred, and negative ones when a gain
occurs.

e For any fixed value of x let

\Ij(x/y) =P [L(CIJ, ) < 7}] — FL(QZ,')<7>

be the cumulative distribution function of the loss function L(x,-)
associated with holding the investment x.
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Definitions (cont.)

For any a € [0, 1] (typically, a = .95 is chosen), the value at risk on the
confidence level « is defined by

VaR, = mi
aRo(x) := min v

s.t. Y(x,v) > a.

e Since W is typically a nonlinear function, computing the value at risk is
a nonlinear programming problem.

e Note that if the loss function is continuous, then VaR,(x) is such that

U(z, VaR, (7)) = «
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Example 1

o A set of risky assets S',...,S™ have multivariate normal returns R ~
N(u, @) over the investment period |0, 1].

e Suppose we want to find the portfolio z* that minimizes the value at
risk on the confidence level «.

e |f the total value of the invested capital is w, then the loss incurred by
the portfolio = over the investment period is —wR ' x.

e Therefore, we have to solve a bilevel optimization problem (see next
slide).
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Portfolio Optimization with VaR

(VM1) z* = arg m%Rn VaR, ()
zeR"

st. Ax > a, Bx =0,
where the objective function

VaRq () = mi
aRq(2) min

i exp{—5(r—p)'Q 1 (r—p)} PR,
N /{r:—wﬂxg} Vv (2m)" det(Q) -

is itself the optimal solution to an optimization problem.
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Example 2

e The return vector R of a set of risky assets S',...,S™ takes the values
rl, ..., rF € R™ with probability 1/k each.

e Find the vector x* of relative wealth allocation weights that minimizes
the value at risk on the confidence level a.

(VM2) z* = arg m%R{n VaR, ()
zeR"

s.t. Ax > a, Bx = b,

with
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Drawbacks

VaR,-minimization has a number of serious drawbacks:

e The objective function VaR, in Example 2 is nonlinear and nonsmooth
with many local minimizers.

e Both (VM1) and (VM2) are bilevel optimization problems, which are
generally computationally difficult to solve..

e VaR, is not convexl

— Suppose we buy two bonds for $100 each, each of which will default
with a probability of 4%.

— VaRg g5 is 0 for each bond independently, since the probability of
losing nothing is more than 95% for each bond individually.

— The combination of the two bonds has VaR g5 equal to 100, however
(the probability of losing nothing on either bond is .96% < 0.95).

— So VaR g5 is bigger for the combination!

e VaR, pays no attention to the magnitude of losses when the rare
extremal event of experiencing a loss above the level VaR,, occurs.



ISE 347/447 Lecture 24 10

Conditional Value at Risk (CVaR)

e [To overcome this drawback, the notion of conditional value at risk
(CVaR) has been developed.

e This is the same as mean expected loss, mean shortfall, expected shortfall
risk and tail-VaR.

e As before, let a € [0, 1] be a given confidence level.

e [hen we define

CVaR,(x) = — /
aR,(x) :=
e {w:L(x,w)>VaRy(x)}

L(z,w)Pldw].

e [ he intuitive basis for this definition is that when the loss function is
continuous, we have

CVaRy(z) =E[L(z,w) || L(x,w) > VaR,(x)]
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Example 3

e A given investment generates losses of L(j) =7 —80 (j =1,...,100)
each with probability 1%.

We h
* © Nave VaR0,95: min L(])

j=1,...,100
PP
£~ 100 ~

e The constraint is satisfied for j = 95,...,100. Therefore,

VaR, = min__ (7 —80) = 15.

e The expected shortfall risk is

1 i 80
CVaRg o5 = Z —17.5.

= ‘
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Comparing VaR and CVaR

e Note that
1
CVaRa(2) 21— | Valta(@) Plda]
l —« {w:L(z,w)>VaRa(x)}
_ Vﬁaf) P[L(z,w) > VaRa(z)]
> VaRa($>7

so minimizing CVaR, also makes VaR, small, but the opposite may
not be true.

e CVaR, () can now be used as a risk measure in investment decision
problems that take the form

(CVM) 2" = arg m%Rn CVaR, ()
zeR"

s.t. x € F,

where F is some set of feasible investments defined by a set of
constraints.
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Comparing VaR and CVaR: Simple Example

e Suppose again that we buy two bonds for $100 each, each of which will
default with a probability of 4%.

e CVaRg g5 is 80 = (.04 x 100)/0.05 for each bond independently

e The combination of the two bonds has CVaR g5 equal to (200 x .04 +
100 x (.05 — .042))/.05 = 103.

e Note that in this example, we do not have P[L(z,w) > VaR,(x)] = 1—«
(we will come back to this).

e This means that the risk of the two bonds together is now less than the
sum of the risks of the individual bonds (103 < 160).

e In fact, we can show that CVaR, is both monotonic and convex.
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Example 4

In Example 1, if we had proposed to find an investment that minimizes
CVaR,, we would have had to solve

(CVM1) z* = arg min CVaR,(x)

reR™
s.t. Ax > a, Bx =0,

where
B T, . 10 ToO—1(, _
CVaR,(x) = v e exp{ a(r—w) Q@ (r ,u)} dr
1 — o J{r—wrTa>VaRa(2)} v (2m)" det(Q)
and

VaR(z) = mj
aRa () = min ~

. exp{—35(r—pu) Q' (r—p)} PR,
* /{r:—wﬂxgv} v (2m)"det(Q) B
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Example 5

In Example 2, if we had proposed to find an investment that minimizes
CVaR,, we would have had to solve

(CVM2) 2" = arg m%Rn CVaR,(x)
reR?

s.t. Ax >a, Bx = b,

where
1 |
CVaR,(x) = A Z —wz ' r’,
=
T ={i:—wzx'r" > VaRy(2)},
and
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Computing CVaR

e These examples illustrate that computing CVaR,(x) generally requires
the computation of VaR,(z).

e This suggests that the CVaR,-minimization problem

(CVM) z* = arg m%Rn CVaR,(z)
reR™

st. zeF
might be even harder than the VaR,-minimization problem

(VM) z* = arg m%Rn VaR, ()
reR"™

s.t. x € F.

e |t thus comes as a surprise that under quite reasonable modeling
assumptions, the opposite is true.
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Let 5(x) = P[L(x,w) > VaR,(x)] and consider the auxiliary function

* Pldw].

ST U LS

Theorem 1.

i) For any fixed x, the function v+ F,(x,7) is convex.
i) VaRy(x) is a minimizer of the problem min. F,(x,").

i) Fo(x,VaRy(z)) = CVaRy (7).
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Proof: i) Since (L(x,w) — 7)4 is a convex function in 7, it is true that for
any 71,72 and 7 € [0, 1],

Fo(z, 7+ (1 — 7))

<7y 4+ (1 = 7)Y

N /Q (T(L(%;()x; Y1), i T)(L(fb,w) - 72)+> Pldw)

— TFa(:L‘,’}q) + (1 — T)Fa(xvaZ)'

This shows that F,(x,) is convex in 7.
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ii) Since the problem of minimizing F, (x,~) with respect to v is convex,
the KKT conditions are sufficient for optimality, i.e., we only need to check

that the F,(x,~) is stationary at 7 = VaR,(x).

For any set S C (2 let ys be the associated indicator function

W) =
Xs(w) 0 otherwise.

{1 fweds,

With this notation we have

0 w:L(x,w aRq(x
2 Fo(w, VaRa(2)) = 1 — /Q ML, o ) prg,

Oy
P [L(x,w) > VaR(z)]
b

@) =0

—1—
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iii) We have

F,(z,VaR,(x)) = VaR(x) —I—/

Q B(x)
L(z,w)
= VaR,
’ (x> " /{w:L(x,w)ZVaRa(a:)} 6(5[3) P[dW]

— VaR,(z)

= VaR,(z) + CVaR,(z) — VaR, ().
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Minimizing CVaR,

e Theorem 1 now implies that the CVaR,-minimization problem

(MCV) min CVaR(z)

reRM

s.t. x €& F

can be reformulated as the single-level optimization problem
MCV’ min F,(x,
(MCV)  min | Fu(r.)

s.t. x & F.

e |n applications, it is often the case that F, is convex in x as well, and F
IS a convex set.

e In this case (MCV') is a convex minimization problem and can generally
be well solved.
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Example 6

e Problem (CVM1) from Example 4 is equivalent to

N 1 IR SRR o Gl DML Gl D)
(CVML) - min oy + 77— /Rn ( 7)+ J/2m)" det(Q) ’

st. Ax > a, Bx = b.

e Since (—wr'x — ), is convex in x, the objective function of (CVM1')

Is a positive combination of convex functions and hence also convex in
x.

e By Theorem 1 the objective function is also convex in 7.
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Example 7

e Problem (MCV2) from Example 5 is equivalent to

, 1 N (—wa 7 —7)
(MCV2') I;llvn W;

s.t. Ax >a, Bx =0.

e Since f(x) ~ 1 — «, Problem (MCV2) can be approximated by the
convex problem

1 < Trt— )y

(—wx
1—04Z k

1=1

st. Ax > a, Brxr =b.

(MCV2')  min 7 +
T,y
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Example 7 (cont.)

e Finally, Problem (MCV2’) is equivalent to the following LP,

k
1
LMCV2'’ i g ;
(LMCV2') m1n7+(1_&)ki:1z

7,7,
st. oz > —wzx' ri—y, (i=1,...,k)
Ax > a, Bz =0,
z >0,

e Note that we replaced a piecewise linear convex objective function by a
linear objective by introducing extra variables and extra linear constraints.

e This is the same thing we did in the L-shaped method.
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General Techniques

e Example 7 can be generalized to approximate any CVaR,-minimization
problem via LP or QP:

e For this purpose we replace the probability measure P on €2 by a finite
set of equiprobable scenarios wq, ..., ws.

e T hese scenarios are typically obtained by statistical sampling.

e Next, we approximate F,, by

Fa(wﬁ):’Y‘F(l_&)

so that the problem (MCV) can be approximated.
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Approximating
The approximation is then
| S
(AMCV)  min v+ 7z ;(L(fc, ws) =)+

s.t. x € F.

Introducing artificial variables to get rid of the break points of the objective
function, we replace (AMCV) by the equivalent problem

€L,z,7y

S
LAMCV ' s
( CV) min 1_&322

st. zs>0, (s=1,...,5)
zszL(az,wS)—’y, (s=1,...,9)
Az > b.
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Remarks

o If L(z,w) is linear in x, then (LAMCV) is an LP.

e More generally, L(x,w) is typically convex in z, in which case (LAMCV)
is well solved via standard NLP software.

e In applications in which L(x,w) is not convex in x, (LAMCV) is often
further approximated by replacing L(x,w) by an approximation that is
convex in .

e Typically, NLP software will do this automatically.
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Further Applications

e In risk management, one is often interested in controlling the expected
loss at several confidence levels.

e The following model is typical,

(RM) max p'x

st. CVaRy,(z) Suay,, (J=1,...,k)
Ax > a, Bxz=0.

e To control the risk of the investment x, we thus require that the
conditional value at risk must not exceed thresholds Uq; ON the confidence
levels o, ..., ag.
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Adapting the LAMCV

The reformulation of the finite scenario case can easily be adapted to such
problems, which now become

(ARM) max p'z

',13777'2

t. s<Us., (j=1,....k
s 1_%SZZ— j )

2 >0, (s=1,...,5)
zs > L(x,ws) — 7y, (s=1,...,5),
Ax > a, Bz =0>.




