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Reading for This Lecture

• C&T Chapter 17
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Risk Measures

• Arisk measure ρ, as formally defined in the literature, is just a real-valued
funtion of a random variable (not a very useful definition).

– The random variable we are primarily interested in is the random
vector of returns of a given portfolio.

– Intuitively, the risk measure can be thought of as the opposite of a
“utility function.”

– With utility, bigger is better; with risk, smaller is better.

• To make intuitive sense, the function should have certain properties,
including

– Monotonicity: Y ≥ X ⇒ ρ(Y ) ≤ ρ(X) (adding more assets to one’s
portfolio should not increase risk).

– Convexity: ρ((1 − λ)X + λY ) ≤ (1 − λ)ρ(X) + λρ(Y ) (the risk of
two separate portfolios is at least as much as the risk of one combined
portfolio).

• It is also intuitive that a risk measure should not be “symmetric” (the
disutility of a loss does not equal the utility of a similar gain).

• Note that a “risk measure” may not only be an evaluation of the risk in
the intuitive way we think of it.
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Value at Risk (VaR)

• The only risk measure we have considered so far is the variance of the
return of a given portfolio.

• This measure is convex, but is not monotonic and is also symmetric.

• Value at risk is a risk measure developed at J.P.Morgan, which is in
wide-spread use across the finance industry.

• VaRα is defined as the smallest level of loss for which the probability of
experiencing a loss above this level is smaller than 1− α.

• In other words, the loss will exceed VaRα with probability at most 1−α.

• This measure is “asymmetric,” since it is only positive when there is a
loss.

• Let us now define this notion more formally.
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Definitions

• Consider an investment decision represented by the vector x ∈ Rn.

• Let the “loss” over an investment period under the outcome ω ∈ Ω be
L(x, ω).

• For fixed x, the loss function L(x, ·) is a random variable that takes
positive values when a loss is incurred, and negative ones when a gain
occurs.

• For any fixed value of x let

Ψ(x, γ) := P [L(x, ·) ≤ γ}] = FL(x,·)(γ)

be the cumulative distribution function of the loss function L(x, ·)
associated with holding the investment x.
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Definitions (cont.)

For any α ∈ [0, 1] (typically, α = .95 is chosen), the value at risk on the
confidence level α is defined by

VaRα(x) := min
γ∈R

γ

s.t. Ψ(x, γ) ≥ α.

• Since Ψ is typically a nonlinear function, computing the value at risk is
a nonlinear programming problem.

• Note that if the loss function is continuous, then VaRα(x) is such that

Ψ(x,VaRα(x)) = α
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Example 1

• A set of risky assets S1, . . . , Sn have multivariate normal returns R ∼
N(µ,Q) over the investment period [0, 1].

• Suppose we want to find the portfolio x∗ that minimizes the value at
risk on the confidence level α.

• If the total value of the invested capital is w, then the loss incurred by
the portfolio x over the investment period is −wR>x.

• Therefore, we have to solve a bilevel optimization problem (see next
slide).
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Portfolio Optimization with VaR

(VM1) x∗ = arg min
x∈Rn

VaRα(x)

s.t. Ax ≥ a, Bx = b,

where the objective function

VaRα(x) = min
γ∈R

γ

s.t.

∫
{r:−wr>x≤γ}

exp
{
−1

2(r − µ)>Q−1(r − µ)
}√

(2π)n det(Q)
dr ≥ α

is itself the optimal solution to an optimization problem.
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Example 2

• The return vector R of a set of risky assets S1, . . . , Sn takes the values
r1, . . . , rk ∈ Rn with probability 1/k each.

• Find the vector x∗ of relative wealth allocation weights that minimizes
the value at risk on the confidence level α.

(VM2) x∗ = arg min
x∈Rn

VaRα(x)

s.t. Ax ≥ a, Bx = b,

with

VaRα(x) = min
γ∈R

γ

s.t.
∑

{i:−wx>ri≤γ}

1

k
≥ α.
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Drawbacks

VaRα-minimization has a number of serious drawbacks:

• The objective function VaRα in Example 2 is nonlinear and nonsmooth
with many local minimizers.

• Both (VM1) and (VM2) are bilevel optimization problems, which are
generally computationally difficult to solve..

• VaRα is not convex!

– Suppose we buy two bonds for $100 each, each of which will default
with a probability of 4%.

– VaR0.95 is 0 for each bond independently, since the probability of
losing nothing is more than 95% for each bond individually.

– The combination of the two bonds has VaR.95 equal to 100, however
(the probability of losing nothing on either bond is .962 < 0.95).

– So VaR.95 is bigger for the combination!

• VaRα pays no attention to the magnitude of losses when the rare
extremal event of experiencing a loss above the level VaRα occurs.
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Conditional Value at Risk (CVaR)

• To overcome this drawback, the notion of conditional value at risk
(CVaR) has been developed.

• This is the same as mean expected loss, mean shortfall, expected shortfall
risk and tail-VaR.

• As before, let α ∈ [0, 1] be a given confidence level.

• Then we define

CVaRα(x) :=
1

1− α

∫
{ω:L(x,ω)≥VaRα(x)}

L(x, ω) P[dω].

• The intuitive basis for this definition is that when the loss function is
continuous, we have

CVaRα(x) = E [L(x, ω) ‖L(x, ω) ≥ VaRα(x)]
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Example 3

• A given investment generates losses of L(j) = j − 80 (j = 1, . . . , 100)
each with probability 1%.

• We have
VaR0.95 = min

j=1,...,100
L(j)

s.t.

j∑
i=1

1

100
≥ 0.95.

• The constraint is satisfied for j = 95, . . . , 100. Therefore,

VaRα = min
j=95,...,100

(j − 80) = 15.

• The expected shortfall risk is

CVaR0.95 =
1

0.05

100∑
j=95

j − 80

100
= 17.5.
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Comparing VaR and CVaR

• Note that

CVaRα(x) ≥ 1

1− α

∫
{ω:L(x,ω)≥VaRα(x)}

VaRα(x) P[dω]

=
VaRα(x)

1− α
P [L(x, ω) ≥ VaRα(x)]

≥ VaRα(x),

so minimizing CVaRα also makes VaRα small, but the opposite may
not be true.

• CVaRα(x) can now be used as a risk measure in investment decision
problems that take the form

(CVM) x∗ = arg min
x∈Rn

CVaRα(x)

s.t. x ∈ F ,

where F is some set of feasible investments defined by a set of
constraints.
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Comparing VaR and CVaR: Simple Example

• Suppose again that we buy two bonds for $100 each, each of which will
default with a probability of 4%.

• CVaR0.95 is 80 = (.04× 100)/0.05 for each bond independently

• The combination of the two bonds has CVaR.95 equal to (200× .042 +
100× (.05− .042))/.05 = 103.

• Note that in this example, we do not have P[L(x, ω) ≥ VaRα(x)] = 1−α
(we will come back to this).

• This means that the risk of the two bonds together is now less than the
sum of the risks of the individual bonds (103 < 160).

• In fact, we can show that CVaRα is both monotonic and convex.
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Example 4

In Example 1, if we had proposed to find an investment that minimizes
CVaRα, we would have had to solve

(CVM1) x∗ = arg min
x∈Rn

CVaRα(x)

s.t. Ax ≥ a, Bx = b,

where

CVaRα(x) =
−w

1− α

∫
{r:−wr>x≥VaRα(x)}

r>x · exp
{
−1

2(r − µ)>Q−1(r − µ)
}√

(2π)n det(Q)
dr

and

VaRα(x) = min
γ∈R

γ

s.t.

∫
{r:−wr>x≤γ}

exp
{
−1

2(r − µ)>Q−1(r − µ)
}√

(2π)n det(Q)
dr ≥ α
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Example 5

In Example 2, if we had proposed to find an investment that minimizes
CVaRα, we would have had to solve

(CVM2) x∗ = arg min
x∈Rn

CVaRα(x)

s.t. Ax ≥ a, Bx = b,

where

CVaRα(x) =
1

|I|
∑
i∈I

−wx>ri,

I = {i : −wx>ri ≥ VaRα(x)},

and

VaRα(x) = min
γ∈R

γ

s.t.
∑

{i:−wx>ri≤γ}

1

k
≥ α.
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Computing CVaR

• These examples illustrate that computing CVaRα(x) generally requires
the computation of VaRα(x).

• This suggests that the CVaRα-minimization problem

(CVM) x∗ = arg min
x∈Rn

CVaRα(x)

s.t. x ∈ F

might be even harder than the VaRα-minimization problem

(VM) x∗ = arg min
x∈Rn

VaRα(x)

s.t. x ∈ F .

• It thus comes as a surprise that under quite reasonable modeling
assumptions, the opposite is true.
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Let β(x) = P[L(x, ω) ≥ VaRα(x)] and consider the auxiliary function

Fα(x, γ) := γ +

∫
Ω

(L(x, ω)− γ)+

β(x)
P[dω].

Theorem 1.

i) For any fixed x, the function γ 7→ Fα(x, γ) is convex.

ii) VaRα(x) is a minimizer of the problem minγ Fα(x, γ).

iii) Fα(x,VaRα(x)) = CVaRα(x).
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Proof: i) Since (L(x, ω)− γ)+ is a convex function in γ, it is true that for
any γ1, γ2 and τ ∈ [0, 1],

Fα(x, τγ1 + (1− τ)γ2)

≤ τγ1 + (1− τ)γ2

+

∫
Ω

(
τ

(L(x, ω)− γ1)+

β(x)
+ (1− τ)

(L(x, ω)− γ2)+

β(x)

)
P[dω]

= τFα(x, γ1) + (1− τ)Fα(x, γ2).

This shows that Fα(x, γ) is convex in γ.
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ii) Since the problem of minimizing Fα(x, γ) with respect to γ is convex,
the KKT conditions are sufficient for optimality, i.e., we only need to check
that the Fα(x, γ) is stationary at γ = VaRα(x).

For any set S ⊂ Ω let χS be the associated indicator function

χS(ω) =

{
1 if ω ∈ S,
0 otherwise.

With this notation we have

∂

∂γ
Fα(x,VaRα(x)) = 1−

∫
Ω

χ{ω:L(x,ω)≥VaRα(x)}(ω)

β(x)
P[dω]

= 1− P [L(x, ω) ≥ VaRα(x)]

β(x)
= 0
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iii) We have

Fα(x,VaRα(x)) = VaRα(x) +

∫
Ω

(L(x, ω)−VaRα(x))+

β(x)
P[dω]

= VaRα(x) +

∫
{ω:L(x,ω)≥VaRα(x)}

L(x, ω)

β(x)
P[dω]

−VaRα(x)
P[L(x, ω) ≥ VaRα(x)]

β(x)

= VaRα(x) + CVaRα(x)−VaRα(x).
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Minimizing CVaRα

• Theorem 1 now implies that the CVaRα-minimization problem

(MCV) min
x∈Rn

CVaRα(x)

s.t. x ∈ F

can be reformulated as the single-level optimization problem

(MCV’) min
(x,γ)∈Rn+1

Fα(x, γ)

s.t. x ∈ F .

• In applications, it is often the case that Fα is convex in x as well, and F
is a convex set.

• In this case (MCV’) is a convex minimization problem and can generally
be well solved.
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Example 6

• Problem (CVM1) from Example 4 is equivalent to

(CVM1’) min
x,γ

γ +
1

1− α

∫
Rn

(
−wr>x− γ

)
+

exp
{
−1

2(r − µ)>Q−1(r − µ)
}√

(2π)n det(Q)
dr

s.t. Ax ≥ a, Bx = b.

• Since (−wr>x− γ)+ is convex in x, the objective function of (CVM1’)
is a positive combination of convex functions and hence also convex in
x.

• By Theorem 1 the objective function is also convex in γ.

22



ISE 347/447 Lecture 24 23

Example 7

• Problem (MCV2) from Example 5 is equivalent to

(MCV2’) min
x,γ

γ +
1

β(x)

k∑
i=1

(−wx>ri − γ)+

k

s.t. Ax ≥ a, Bx = b.

• Since β(x) ≈ 1 − α, Problem (MCV2) can be approximated by the
convex problem

(MCV2’) min
x,γ

γ +
1

1− α

k∑
i=1

(−wx>ri − γ)+

k

s.t. Ax ≥ a, Bx = b.
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Example 7 (cont.)

• Finally, Problem (MCV2’) is equivalent to the following LP,

(LMCV2’) min
x,z,γ

γ +
1

(1− α)k

k∑
i=1

zi

s.t. zi ≥ −wx>ri − γ, (i = 1, . . . , k)

Ax ≥ a, Bx = b,

z ≥ 0,

• Note that we replaced a piecewise linear convex objective function by a
linear objective by introducing extra variables and extra linear constraints.

• This is the same thing we did in the L-shaped method.
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General Techniques

• Example 7 can be generalized to approximate any CVaRα-minimization
problem via LP or QP:

• For this purpose we replace the probability measure P on Ω by a finite
set of equiprobable scenarios ω1, . . . , ωS.

• These scenarios are typically obtained by statistical sampling.

• Next, we approximate Fα by

Fα(x, γ) = γ +
1

(1− α)S

S∑
s=1

(L(x, ωs)− γ)+,

so that the problem (MCV) can be approximated.
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Approximating

The approximation is then

(AMCV) min
x,γ

γ +
1

(1− α)S

S∑
s=1

(L(x, ωs)− γ)+

s.t. x ∈ F .

Introducing artificial variables to get rid of the break points of the objective
function, we replace (AMCV) by the equivalent problem

(LAMCV) min
x,z,γ

γ +
1

(1− α)S

S∑
i=1

zs

s.t. zs ≥ 0, (s = 1, . . . , S)

zs ≥ L(x, ωs)− γ, (s = 1, . . . , S)

Ax ≥ b.
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Remarks

• If L(x, ω) is linear in x, then (LAMCV) is an LP.

• More generally, L(x, ω) is typically convex in x, in which case (LAMCV)
is well solved via standard NLP software.

• In applications in which L(x, ω) is not convex in x, (LAMCV) is often
further approximated by replacing L(x, ω) by an approximation that is
convex in x.

• Typically, NLP software will do this automatically.
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Further Applications

• In risk management, one is often interested in controlling the expected
loss at several confidence levels.

• The following model is typical,

(RM) max
x

µ>x

s.t. CVaRαj(x) ≤ uαj, (j = 1, . . . , k)

Ax ≥ a, Bx = b.

• To control the risk of the investment x, we thus require that the
conditional value at risk must not exceed thresholds uαj on the confidence
levels α1, . . . , αk.
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Adapting the LAMCV

The reformulation of the finite scenario case can easily be adapted to such
problems, which now become

(ARM) max
x,γ,z

µ>x

s.t. γ +
1

(1− αj)S

S∑
s=1

zs ≤ Uαj, (j = 1, . . . , k)

zs ≥ 0, (s = 1, . . . , S)

zs ≥ L(x, ωs)− γ, (s = 1, . . . , S),

Ax ≥ a, Bx = b.
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