Financial Optimization ISE 347/447

Lecture 22

Dr. Ted Ralphs

Reading for This Lecture

• C&T Chapter 16

Solving the Deterministic Equivalent

Recall the deterministic equivalent (DE) version of the standard two-stage stochastic program.

minimize

$$c^{\top}x$$
 + $p_1q^{\top}y_1$ + $p_2q^{\top}y_2$ + \cdots + $p_sq^{\top}y_s$ subject to

Note the block angular structure. How do we take advantage of this?

Bender's Decomposition

- Bender's Decomposition is a technique for solving LPs with this kind of block angular structure.
- Note that if we fix the first-stage variables (x), then the LP decomposes neatly into |S| smaller LPs, one for each scenario.
- Furthermore, these LPs are all identical except for the right-hand side.

Rewriting

• As before, let us rewrite the DE LP as

minimize

$$c^{\top}x + \sum_{s \in S} P_s(x)$$

subject to

$$Ax = b$$
$$x \in X$$

where

$$P_s(x) = \min_{y \in Y} \{ p_s(q^\top y) \mid Wy = h_s - T_s x \}$$

General Solution Approach

• We have already seen that $P_k(x) = v(h_k - T_k x)$ and thus is a convex function (in fact, it is piecewise linear).

- We will linearize the objective function by building up an approximation to it using linear inequalities.
- ullet Essentially, we approximate the LP $P_s(x)$ associated with scenario $s \in S$ by

minimize

 z_s

subject to

$$z_s \ge (u_s^j)^\top T_s(x^j - x) + P_s(x^j) \ \forall j \in J,$$

where J indexes a collection of first-stage solutions and u_s^j is an optimal solution to the dual of the LP $P_s(x^j)$ when it exists.

• We will also have to make sure to eliminate any first-stage solution for which there is no feasible recourse in scenario s.

Optimality Cuts

• Let's consider the LP associated with scenario $s \in S$

$$P_s(x) = \min_{y \in Y} \{ p_s(q^\top y) \mid Wy = h_s - T_s x \}$$

By LP duality, we have

$$P_s(x) = \max\{u_s^{\top}(h_s - T_s x) \mid W^{\top} u_s \le p_s q\}$$

• Let \hat{x} be such that $P_s(\hat{x})$ is feasible and let \hat{u}_s be an optimal dual solution.

Optimality Cuts (cont.)

• Then by LP duality, we have

$$P_s(x) \ge \hat{u}_s^{\top} (h_s - T_s x)$$

• Furthermore, since

$$P_s(\hat{x}) = \hat{u}_s^{\top} (h_s - T_s \hat{x}),$$

we have

$$P_s(x) \ge \hat{u}_s^{\top} T_s(\hat{x} - x) + P_s(\hat{x})$$

Feasibility Cuts

• Suppose we uncover a first-stage solution \hat{x} for which $P_s(\hat{x})$ is infeasible?

- In this case, we can obtain a direction \hat{u}_s of unboundedness for the dual of the LP $P_s(\hat{x})$.
- For such a direction, we have

$$\hat{u}_s^{\top}(h_s - T_s \hat{x}) > 0$$

and

$$W^{\top} \hat{u}_s \leq p_s q$$

- So we have that $P_s(x)$ will be infeasible for any x such that $\hat{u}_s^{\top}(h_s T_s x) > 0$.
- Since we are only interested in first-stage solutions with feasible recourse, the inequality

$$\hat{u}_s^{\top} T_s x \ge \hat{u}_s^{\top} h_s$$

must be satisfied by all first-stage solutions.

Reformulation with Benders Cuts

Conceptually, we can reformulate the DE LP as the following LP:

minimize

$$c^{\top}x + \sum_{s \in S} z_s$$

subject to

$$Ax = b$$

$$x \in X$$

$$z_s \geq (u_s^j)^\top T_s(x^j - x) + P_s(x^j) \ \forall j \in J, s \in S,$$

- ullet This is an exact reformulation if J indexes the set of all all first-stage solutions.
- In practice, we maintain a set $\bar{J} = \{x^0, \dots, x^k\}$ of the solutions generated in the first k iterations, as we see next.

Initializing the Algorithm

• We will start by solving the initial master LP with $\bar{J}=\emptyset$: minimize

$$c^{\top}x$$

subject to

$$\begin{array}{ccc} Ax & = & b \\ x & \in & X \end{array}$$

to obtain x^0 .

- We will then solve $P_s(x^0)$ for each $s \in S$.
- This will give us an upper bound

$$c^{\top}x + \sum_{s \in S} P_s(x^0)$$

on the optimal value of the stochastic program.

Iterating

• In iteration k, we solve $P_s(x^{k-1})$ to obtain either an optimality cut or a feasibility cut (with associated dual solution $\hat{u_s}^{k-1}$).

We then solve

minimize

$$c^{\top}x + \sum_{s \in S} z_s$$

subject to

$$Ax = b$$
 $x \in X$
 $z_s \ge (u_s^j)^\top T_s(x^j - x) + P_s(x^j) \ \forall j \in \{0, \dots, k-1\}, s \in S,$

- This is a relaxation of the original problem, so we get a lower bound and a new first-stage solution x^1 (which yields a new upper bound).
- This procedure is iterated until the upper and lower bounds are equal (or at least are "close enough" together).
- This is called the *L-shaped method*.