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Reading for This Lecture

• C&T Chapter 16
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Solving the Deterministic Equivalent

Recall the deterministic equivalent (DE) version of the standard two-stage
stochastic program.

minimize

c>x + p1q
>y1 + p2q

>y2 + · · · + psq
>ys

subject to

Ax = b
T1x + Wy1 = h1

T2x + Wy2 = h2
... + . . .

TSx + Wys = hs

x ∈ X y1 ∈ Y y2 ∈ Y ys ∈ Y

Note the block angular structure. How do we take advantage of this?
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Bender’s Decomposition

• Bender’s Decomposition is a technique for solving LPs with this kind of
block angular structure.

• Note that if we fix the first-stage variables (x), then the LP decomposes
neatly into |S| smaller LPs, one for each scenario.

• Furthermore, these LPs are all identical except for the right-hand side.
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Rewriting

• As before, let us rewrite the DE LP as

minimize
c>x +

∑
s∈S

Ps(x)

subject to

Ax = b

x ∈ X

where
Ps(x) = min

y∈Y
{ps(q>y) |Wy = hs − Tsx}
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General Solution Approach

• We have already seen that Pk(x) = v(hk − Tkx) and thus is a convex
function (in fact, it is piecewise linear).

• We will linearize the objective function by building up an approximation
to it using linear inequalities.

• Essentially, we approximate the LP Ps(x) associated with scenario s ∈ S
by
minimize

zs

subject to
zs ≥ (uj

s)
>Ts(x

j − x) + Ps(x
j) ∀j ∈ J,

where J indexes a collection of first-stage solutions and uj
s is an optimal

solution to the dual of the LP Ps(x
j) when it exists.

• We will also have to make sure to eliminate any first-stage solution for
which there is no feasible recourse in scenario s.
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Optimality Cuts

• Let’s consider the LP associated with scenario s ∈ S

Ps(x) = min
y∈Y
{ps(q>y) |Wy = hs − Tsx}

• By LP duality, we have

Ps(x) = max{u>s (hs − Tsx) |W>us ≤ psq}

• Let x̂ be such that Ps(x̂) is feasible and let ûs be an optimal dual
solution.
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Optimality Cuts (cont.)

• Then by LP duality, we have

Ps(x) ≥ û>s (hs − Tsx)

• Furthermore, since
Ps(x̂) = û>s (hs − Tsx̂),

we have
Ps(x) ≥ û>s Ts(x̂− x) + Ps(x̂)
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Feasibility Cuts

• Suppose we uncover a first-stage solution x̂ for which Ps(x̂) is infeasible?

• In this case, we can obtain a direction ûs of unboundedness for the dual
of the LP Ps(x̂).

• For such a direction, we have

û>s (hs − Tsx̂) > 0

and
W>ûs ≤ psq

• So we have that Ps(x) will be infeasible for any x such that û>s (hs −
Tsx) > 0.

• Since we are only interested in first-stage solutions with feasible recourse,
the inequality

û>s Tsx ≥ û>s hs

must be satisfied by all first-stage solutions.
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Reformulation with Benders Cuts

Conceptually, we can reformulate the DE LP as the following LP:

minimize
c>x +

∑
s∈S

zs

subject to

Ax = b

x ∈ X

zs ≥ (uj
s)
>Ts(x

j − x) + Ps(x
j) ∀j ∈ J, s ∈ S,

• This is an exact reformulation if J indexes the set of all all first-stage
solutions.

• In practice, we maintain a set J̄ = {x0, . . . , xk} of the solutions generated
in the first k iterations, as we see next.
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Initializing the Algorithm

• We will start by solving the initial master LP with J̄ = ∅:
minimize

c>x

subject to

Ax = b

x ∈ X

to obtain x0.

• We will then solve Ps(x
0) for each s ∈ S.

• This will give us an upper bound

c>x +
∑
s∈S

Ps(x
0)

on the optimal value of the stochastic program.
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Iterating

• In iteration k, we solve Ps(x
k−1) to obtain either an optimality cut or a

feasibility cut (with associated dual solution ûs
k−1).

• We then solve

minimize
c>x +

∑
s∈S

zs

subject to

Ax = b

x ∈ X

zs ≥ (uj
s)
>Ts(x

j − x) + Ps(x
j) ∀j ∈ {0, . . . , k − 1}, s ∈ S,

• This is a relaxation of the original problem, so we get a lower bound and
a new first-stage solution x1 (which yields a new upper bound).

• This procedure is iterated until the upper and lower bounds are equal (or
at least are “close enough” together).

• This is called the L-shaped method.
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