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Reading for This Lecture

• C&T Chapter 15
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The Mortgage Market

• Mortgages represent the largest single sector of the U.S. debt market,
surpassing even the fedral government.

• Many financial instruments have therefore been created to provide credit
to this market.

• The primary way this has been accomplished since the 1970s is the
bundling together of individual mortgages into capital market instruments
called mortgage-backed securities (MBSs).

• The principal and interest from the mortgages in the pool backing an
MBS are passed through to investors in some fashion.

• By selling MBSs, banks can realize their fees up front and lay off their
risk to the market.
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Pass-through MBSs

• Initially, MBSs were simply packaged using a pass-through structure.

• Each investor received a pro rata share of principal and interest payments
for mortgages in the pool.

• The problem with this approach is that the cash flows are very
unpredictable due to pre-payment risk.

• Mortgage payers prepay for a variety of reasons, but for fixed-rate
mortgages, this is usually associated with a drop in interest rates.

• This may force an unplanned reinvestment at a lower interest rate.
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Collateralized Mortgage Obligations

• A collateralized mortgage obligation is a more sophisticated MBS that
rearranges cash flows to make them more predictable.

• There are many ways of doing this, but here we focus on the creation of
consecutive tranches.

• The basic idea is to package the cash flows into bonds with different
maturities.

• Principal payments are funneled to investors in each tranche consecutively
until the obligation is repaid.
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Simple Two-Tranche Model

• Suppose we have an MBS consisting of $100 million in mortgage loans.

• In a two-tranche model, we might divide the pool into two $50 million
tranches.

• Initially, investors in both tranches receive interest payments, but all
principal payments are funneled to the investors in the first tranche (the
fast-pay tranche) until it is repaid.

• After the fast-pay tranche is repaid, remaining principal payments go to
the second tranche.

• By restructuring in this way, the fast-pay tranche reaches maturity much
earlier than the slow-pay tranche.

• A byproduct of the restructuring is that the risk of default is much lower
for the fast-pay tranche.

• This means that the interest rate paid on the fast-pay tranche can be
reduced, resulting in additional profit.
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A Model of Consecutive Tranches

• Early payments are more likely to be fully funded than later ones.

• Hence, fast tranches get a higher credit rating than slower ones and can
be sold at lower interest rates.

• Overall, the interest that has to be paid to buyers of the tranches is
lower than the interest paid by the mortgage holders.

• Hence, the bank issuing the restructured tranches earns money.

• A bond with payback pt of principal at time t (t = 1, . . . , T ) is priced
with respect to its weighted average life (WAL)

WAL =

∑T
t=1 tpt∑T
t=1 pt

.

• A bond with a WAL of n years will be priced like a treasury bond with a
duration of n years plus a spread (extra interest) which depends on the
credit rating.
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Credit Ratings and Spreads

• The spot rates of future coupon payments and the spreads for different
credit ratings can be looked up in a table.

• For example, the table could look as follows, where the spreads under
the credit ratings (AAA etc.) are given in basis points, i.e., in 1/100 of
1%.

duration spot rate AAA AA A BBB BB B CCC
1 4.74% 85 100 115 130 165 220 345
2 4.89% 90 105 125 140 190 275 425
3 5.05% 95 110 135 150 210 335 500
... ... ... ... ... ... ... ... ...
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Notation

• Q0 is the amount of principal to be repaid.

• T is the horizon over which the principal is to be repaid.

• It is the interest to paid in year t.

• At is the scheduled amortization payment in year t.

• qt is the pre-payment rate in year t.

• Rt is the pre-payment amount in year t.

• Pt is the total payment in year t (incuding pre-payment).

• Qt is the amount of principal outstanding at the end of year t.

• r × 100% is the compound yearly interest rate.
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Example

Let’s take Q0 = 100, r = 0.1, T = 10 q1 = .01%. If the principal is to be
repaid in equal installments, then the scheduled amortization payment in
year 1 is

A1 =
Q0r

(1 + r)T − 1
= 6.27.

So we have for year 1:

• Interest: I1 = rQ0 = 10.

• Scheduled amortization: A1 = Q0r/[(1 + r)T − 1] = 6.27.

• Prepayment: R1 = q1(Q0 − 6.27) = 0.937.

• Total principal pay down: P1 = R1 +A1 = 6.27 + 0.937 = 7.207.

• Principal left after year 1: Q1 = Q0 − P1 = 92.793.
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Generalizing

In general, we have a given scenario q1, . . . , qT of prepayment rates in years
1, 2, . . . , T . In year t, we have

• Interest: It = rQk−1.

• Scheduled amortization: At = Qk−1r/[(1 + r)T − 1].

• Prepayment: Rt = qt(Qk−1 −At).

• Total principal pay down: Pt = Rt +At.

• Principal left after year 1: Qt = Qk−1 − Pt.

One can thus recursively compute the corresponding (It, Pt, Qt) (t =
1, . . . , T ).
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Packaging

• The model we have presented is a simplification of the real problem.

• In real CMOs, the pay-back time of the principal is also variable, rather
than just the amount of pricipal paid back.

• Nevertheless, this model is a good approximation to the real one and
leads to very similar results.

• Once the payouts Pt are known, the question is how to optimally package
them into consecutive tranches

(P1, . . . , PT1), (PT1+1, . . . , PT2), . . . , (P..., . . . , PT ).
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Candidate Tranches

• Let us refer to the candidate tranche (Pj, . . . , Pt) as (j, t).

• Associated with the candidate tranche (j, t) is its buffer

Bjt =

∑T
k=t+1Pk∑T
k=1Pk

,

• The buffer is the proportion of principal left after the tranche expires.

• Each tranche also has its own WAL

WALjt =

∑t
k=j kPk∑t
k=j Pk

.

• Note that this is the WAL of a bond that has no repayment of principal
for the first j − 1 years, but interest (coupons) is still paid during this
time.

12



ISE 347/447 Lecture 18 13

Prepayment Scenarios

• In order to achieve a high quality ranking, a tranche must be able
to sustain higher than expected default rates without compromizing
payments to the tranche holders.

• The default rate is determined by the scenario of prepayment rates
q1, . . . , qT .

• Regulatory bodies require that several prescribed scenarios be tested.

• For example, the Public Securities Association (PSA) industry standard
benchmark is q1 = .01, q2 = .03, q3 = .05, and qt = .06 for t ≥ 4
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Tranche Credit Ratings

• For a tranche to be given a certain credit rating, it must satisfy

Bjt ≥WALjt · d · L,

where L is the loss multiple, specified as follows,

Rating AAA AA A BBB BB B CCC
L 6 5 4 3 2 1.5 0

• Hence, the earlier tranches naturally receive higher credit ratings.
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Present Value of a Tranche

• From (Bjt,Wjt) and the above table one can thus compute the credit
rating for each candidate tranche (j, t).

• This rating implies a coupon rate cjt that can be read off the earlier
table of spot rates and spreads.

• Using the coupon rates cjt, the net present value Zjt of tranche (j, t)
can be computed:

– In period k, a payment of cjt times the remaining principal on the
tranche is paid (as interest), and if k ∈ [j, t], then the principal
payment Pk is made.

– The result is a total payment of Ck.
– Then the present value is Tjt =

∑t
k=1Ck/(1 + rk)

k.
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A Dynamic Programming Formulation

• To maximize earnings, the issuer now wants to structure the CMO into
K sequential tranches so as to minimize the net present value of total
payments to bond-holders.

• The stages will be the number of tranches and the states will be the
years 1, . . . , T .

• We set the value function to be

v(k, t) = The minimum present value of total payments to

bondholders in years 1 through t

when the CMO has k tranches up to year t.

• Then

v(1, t) = T1,t

v(k, t) = min
j=k−1,...,t−1

{v(k − 1, j) + Tj+1,t}, k ≤ t.
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Finding the Optimal CMO Structure

• Using this recurrence, we compute v(k, t) for k = 1, . . . ,K and t =
1, . . . , T .

• The optimal net present value of future payments to bondholders is then
mink=1,...,K(k, T ).
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