Financial Optimization
ISE 347 /447

Lecture 16

Dr. Ted Ralphs

ISE 347/447 Lecture 16

Reading for This Lecture

o C&T Chapter 13

ISE 347/447 Lecture 16 2

Dynamic Programming

e Dynamic programming is a methodology applied primarily to sequential
decision processes, such as those occurring in stages over time.

e Because DP methods are well-suited for problems with a time dimension,
they arise naturally in financial settings.

e Note that the term dynamic programming refers both to a modeling
paradigm and to a specific set of methodologies.

e Dynamic programming methods are based on Bellman's Principle of
Optimality.

e This states roughly that in a sequential decision process, every
subsequence of an optimal decision sequence must also be optimal
when viewed as a separate decision problem.

e This principle enables us to formulate recursive relationships that lead to
algorithms for solving optimization problems.

ISE 347/447 Lecture 16 3

Elements of Dynamic Programming

e [he common elements of a DP include

— A set of decision stages.

— A set of possible states in each decision stage.

— A set of transitions between states.

— A value function for each state in each stage indicating the best
objective value achievable from that state.

e Each transition has a cost and can be associated with either an action
by the decision-maker or a random event.

e There are implicit constraints that determine what transitions are feasible.

e [nitially, we will consider only deterministic DPs, in which the transitions
are a result of actions.

ISE 347/447 Lecture 16 4

An Example

e Recall the capital budgeting example from Lecture 13
e We have $4 million to invest in projects over the next three years.

e Each project has an associated cost and profit (in present value dollars)
as follows:

Year 1 Year 2 Year 3
Project Cost Profit Cost Profit Cost Profit
1 0 0 0 0 0 0
2 1 2 1 3 1 2
3 2 4 3 9 2 5
4 4 10 - : - :

e Here, we have a sequential decision process that is amenable to a dynamic
programming approach.

ISE 347/447 Lecture 16 5

The Principle of Optimality

e In this problem, the stages are the time periods and the states are
represented simply as the amount of capital left to invest.

e We add a stage and a state (0,4) to represent the initial problem.

e Let's assume that we have already decided to invest in project 2 during
the first period.

e This means that we have now reduced the problem to one with three
stages in which we have a budget of $3 million.

e The optimal sequence starting from state (1,3) can be determined
independent of the stage 1 decision.

e The principle of optimality tells us that any transition made from state
(1,3) in an overall optimal decision sequence must be consistent such a
sequence starting initially from state (1, 3).

ISE 347/447 Lecture 16 6

Backward Recursion

A DP can be initiated using either a backward or forward recursion.

In the backward case, we compute the optimal decision starting from
each state recursively, beginning at the last period.

The value function for a state represents the cost of an optimal decision
sequence beginning from the given state.

In the last stage, there are no decisions left to be made, so the value
function for all states is set to zero.

We then consider transitions from the second to the third period.

What are the states associated with the second period?

ISE 347 /447 Lecture 16 7

Solution Process

e Let us consider state (2,4).

e The only feasible transitions from state (2,4) are to states (3,2), (3, 3),
and (3,4).

e [he associated costs are 5, 2, and O.

e Taking the maximum of these costs, we can determine that the value
function at state (2,4) is 5.

e We can perform the same analysis for each of the remaining states
associated with period 2.

e With full knowledge of the value functions in periods 2 and 3, the same
basic analysis can now be applied to period 1.

e Finally, we move back to the initial state.

ISE 347/447 Lecture 16 8

Forward Recursion

e In the case of forward recursion, the value function for state (¢,7)
represents the maximum profit that can be obtained in transitioning
from the initial state to state (i, j).

e This time, we initialize by setting the value function of the initial state
to zero.

e There is only one way to reach each of the states in period 1, so we
simply set the value function to the cost of that transition.

e In period 2, let us consider state (2, 3).
e There are two ways to transition to this state, from either (1,4) or (1, 3).

e Since we know the values all states in period 1 already, the value at state
(2,3) can easily be computed as 3.

ISE 347/447 Lecture 16 9

Formalizing

e We first consider deterministic, discrete dynamic programs in which the
set of states in each stage and the set of possible transitions from each
state are finite.

e We consider a set of stages indexed by 1,...,T.

e Thestates in staget areindexed 1,..., K; and are denoted by an ordered
pair (t, k) consisting of the stage and the particular state in that stage.

e The set of feasible decisions in state (i,) is denoted by S(7, 7).

e Each decision results in a transition to a unique state denoted by

T((i,4),d).

e Note that the transition state is often in the next stage, but it does not
have to be.

e The cost of the transition is denoted by ¢((7,7),d).

ISE 347/447 Lecture 16 10

The DP Recursion

The value function v(i,j) at state (7, 7) denotes either

— The optimal cost/profit accumulated from the initial state to state
(,7) (forward method), or

— The optimal cost/profit accumulated from state (¢,j) to some state
in the final stage (backward method).

The principle of optimality gives us a recurrence for determining the
value function in a given state.

Let us consider the backward method for a minimization problem.

In this case, we can write

v(i,j) = min {o(T((i, 7),d)) + e((@, 5), d)}-

For the forward method, there is a similar recurrence.

ISE 347/447 Lecture 16 11

The Knapsack Problem Revisited

e Recall the integer knapsack problem from Lecture 13.

— We are given a set of items with associated values and weights.
— We wish to select a subset of maximum value such that the total

weight is less than a constant K.
— We associate a 0-1 variable with each item indicating whether it is

selected or not.

m
max E Py
j=1

m
s.t. ij:z:j <K
J=1

x>0

T integer

e Knapsack problems arise as subproblems in many financial applications.

ISE 347/447 Lecture 16 12

Formulating The Knapsack Problem as a DP

e Often, the most difficult part of using dynamic programming is
formulating the problem as a DP.

e There are usually multiple ways of doing this.

e In our first formulation, there will be K stages representing the remaining
capacity of the knapsack.

e Each stage has just one state in this formulation, so we use just one
index to represent both.

e The transitions involve putting one of the items into the knapsack.

e Then we have that S(i) = {d | wg < i}, T(i,d) = i — wg, and
c(i,d) =

e The (backward) recurrence is then

v(i) = drélgé: {v(i —wq) + pa}-

ISE 347/447 Lecture 16 13

Another Formulation

e Another approach is to associate stage 7 with item (variable) i.
e The state is the capacity remaining after adding items 1,...,7 — 1.

e The decision associated with stage 7 is then the number of items of type
1 to be included in the knapsack.

e \We then have
S(i,j)={de€Zy|d<j/w}

e [he transition function is

T((Z7]>7d) — (Z +1,7— dwz)

e Finally, the (backward) recurrence is

v(i,7) = max {v(i+ 1,7 — dw;) + dp;}
deS(i.))

ISE 347 /447 Lecture 16 14

Simple Knapsack Solver in Python

def knapsack01l(obj, weights, capacity):

""" 0/1 knapsack solver, maximizes profit. weights and capacity integer """

n = len(obj)
c = [[0]*(capacity+1l) for i in range(n)]
added = [[False]*(capacity+1) for i in range(n)]
c [items, remaining capacity]
important: this code assumes strictly positive objective values
for i in range(n):
for j in range(capacity+1):
if (weights[i] > j):
clil [j] = cli-1]1[j]
else:
c_add = obj[i] + c[i-1][j-weights[i]]
if c_add > c[i-1][j]:
c[il [j] = c_add
added[i] [j] = True
else:

c[il [j] = cli-1]1T[j]

ISE 347 /447 Lecture 16

Simple Knapsack Solver in Python (cont’d)

backtrack to find solution
i = n-1
j = capacity

solution = []
while 1 >= 0 and j >= O:
if added[i] [j]:
solution.append (i)
j —-= weights[i]
i-=1

return c[n-1] [capacity], solution

ISE 347/447 Lecture 16 16

Stochastic Dynamic Programming

e The framework discussed here can be enhanced to include stochasticity.

e In other words, the transition occurring after a decision is to one of
several states, each with a certain given probability.

e For each state (¢, 7) and decision d € S(7,j), we have a set of transition
states denoted by R((7, 7),d).

e For each r € R((7,7),d), we have a probability p((¢,), d, r) of transition
to state 7'((¢,7),d,r) with cost ¢((7,7),d,).

e The objective function is stated in terms of expected values, so that the
(backward) recurrence becomes

v(i,j) = min > p(),dr)[o(T (G 5), dor)) + (i, 5), d.)

A€5(03) | L er(Gg).d)

