
Financial Optimization
ISE 347/447

Lecture 16

Dr. Ted Ralphs

ISE 347/447 Lecture 16 1

Reading for This Lecture

• C&T Chapter 13

1

ISE 347/447 Lecture 16 2

Dynamic Programming

• Dynamic programming is a methodology applied primarily to sequential
decision processes, such as those occurring in stages over time.

• Because DP methods are well-suited for problems with a time dimension,
they arise naturally in financial settings.

• Note that the term dynamic programming refers both to a modeling
paradigm and to a specific set of methodologies.

• Dynamic programming methods are based on Bellman’s Principle of
Optimality.

• This states roughly that in a sequential decision process, every
subsequence of an optimal decision sequence must also be optimal
when viewed as a separate decision problem.

• This principle enables us to formulate recursive relationships that lead to
algorithms for solving optimization problems.

2

ISE 347/447 Lecture 16 3

Elements of Dynamic Programming

• The common elements of a DP include

– A set of decision stages.
– A set of possible states in each decision stage.
– A set of transitions between states.
– A value function for each state in each stage indicating the best

objective value achievable from that state.

• Each transition has a cost and can be associated with either an action
by the decision-maker or a random event.

• There are implicit constraints that determine what transitions are feasible.

• Initially, we will consider only deterministic DPs, in which the transitions
are a result of actions.

3

ISE 347/447 Lecture 16 4

An Example

• Recall the capital budgeting example from Lecture 13

• We have $4 million to invest in projects over the next three years.

• Each project has an associated cost and profit (in present value dollars)
as follows:

Year 1 Year 2 Year 3
Project Cost Profit Cost Profit Cost Profit

1 0 0 0 0 0 0
2 1 2 1 3 1 2
3 2 4 3 9 2 5
4 4 10 - - - -

• Here, we have a sequential decision process that is amenable to a dynamic
programming approach.

4

ISE 347/447 Lecture 16 5

The Principle of Optimality

• In this problem, the stages are the time periods and the states are
represented simply as the amount of capital left to invest.

• We add a stage and a state (0, 4) to represent the initial problem.

• Let’s assume that we have already decided to invest in project 2 during
the first period.

• This means that we have now reduced the problem to one with three
stages in which we have a budget of $3 million.

• The optimal sequence starting from state (1, 3) can be determined
independent of the stage 1 decision.

• The principle of optimality tells us that any transition made from state
(1, 3) in an overall optimal decision sequence must be consistent such a
sequence starting initially from state (1, 3).

5

ISE 347/447 Lecture 16 6

Backward Recursion

• A DP can be initiated using either a backward or forward recursion.

• In the backward case, we compute the optimal decision starting from
each state recursively, beginning at the last period.

• The value function for a state represents the cost of an optimal decision
sequence beginning from the given state.

• In the last stage, there are no decisions left to be made, so the value
function for all states is set to zero.

• We then consider transitions from the second to the third period.

• What are the states associated with the second period?

6

ISE 347/447 Lecture 16 7

Solution Process

• Let us consider state (2, 4).

• The only feasible transitions from state (2, 4) are to states (3, 2), (3, 3),
and (3, 4).

• The associated costs are 5 , 2, and 0.

• Taking the maximum of these costs, we can determine that the value
function at state (2, 4) is 5.

• We can perform the same analysis for each of the remaining states
associated with period 2.

• With full knowledge of the value functions in periods 2 and 3, the same
basic analysis can now be applied to period 1.

• Finally, we move back to the initial state.

7

ISE 347/447 Lecture 16 8

Forward Recursion

• In the case of forward recursion, the value function for state (i, j)
represents the maximum profit that can be obtained in transitioning
from the initial state to state (i, j).

• This time, we initialize by setting the value function of the initial state
to zero.

• There is only one way to reach each of the states in period 1, so we
simply set the value function to the cost of that transition.

• In period 2, let us consider state (2, 3).

• There are two ways to transition to this state, from either (1, 4) or (1, 3).

• Since we know the values all states in period 1 already, the value at state
(2, 3) can easily be computed as 3.

8

ISE 347/447 Lecture 16 9

Formalizing

• We first consider deterministic, discrete dynamic programs in which the
set of states in each stage and the set of possible transitions from each
state are finite.

• We consider a set of stages indexed by 1, . . . , T .

• The states in stage t are indexed 1, . . . ,Kt and are denoted by an ordered
pair (t, k) consisting of the stage and the particular state in that stage.

• The set of feasible decisions in state (i, j) is denoted by S(i, j).

• Each decision results in a transition to a unique state denoted by
T ((i, j), d).

• Note that the transition state is often in the next stage, but it does not
have to be.

• The cost of the transition is denoted by c((i, j), d).

9

ISE 347/447 Lecture 16 10

The DP Recursion

• The value function v(i, j) at state (i, j) denotes either

– The optimal cost/profit accumulated from the initial state to state
(i, j) (forward method), or

– The optimal cost/profit accumulated from state (i, j) to some state
in the final stage (backward method).

• The principle of optimality gives us a recurrence for determining the
value function in a given state.

• Let us consider the backward method for a minimization problem.

• In this case, we can write

v(i, j) = min
d∈S(i,j)

{v(T ((i, j), d)) + c((i, j), d)}.

• For the forward method, there is a similar recurrence.

10

ISE 347/447 Lecture 16 11

The Knapsack Problem Revisited

• Recall the integer knapsack problem from Lecture 13.

– We are given a set of items with associated values and weights.
– We wish to select a subset of maximum value such that the total

weight is less than a constant K.
– We associate a 0-1 variable with each item indicating whether it is

selected or not.

max

m∑
j=1

pjxj

s.t.

m∑
j=1

wjxj ≤K

x≥ 0

x integer

• Knapsack problems arise as subproblems in many financial applications.

11

ISE 347/447 Lecture 16 12

Formulating The Knapsack Problem as a DP

• Often, the most difficult part of using dynamic programming is
formulating the problem as a DP.

• There are usually multiple ways of doing this.

• In our first formulation, there will be K stages representing the remaining
capacity of the knapsack.

• Each stage has just one state in this formulation, so we use just one
index to represent both.

• The transitions involve putting one of the items into the knapsack.

• Then we have that S(i) = {d | wd ≤ i}, T (i, d) = i − wd, and
c(i, d) = pd.

• The (backward) recurrence is then

v(i) = max
d∈S(i)

{v(i− wd) + pd}.

12

ISE 347/447 Lecture 16 13

Another Formulation

• Another approach is to associate stage i with item (variable) i.

• The state is the capacity remaining after adding items 1, . . . , i− 1.

• The decision associated with stage i is then the number of items of type
i to be included in the knapsack.

• We then have
S(i, j) = {d ∈ Z+ | d ≤ j/wi}

• The transition function is

T ((i, j), d) = (i+ 1, j − dwi)

• Finally, the (backward) recurrence is

v(i, j) = max
d∈S(i,j)

{v(i+ 1, j − dwi) + dpi}

13

ISE 347/447 Lecture 16 14

Simple Knapsack Solver in Python

def knapsack01(obj, weights, capacity):

""" 0/1 knapsack solver, maximizes profit. weights and capacity integer """

n = len(obj)

c = [[0]*(capacity+1) for i in range(n)]

added = [[False]*(capacity+1) for i in range(n)]

c [items, remaining capacity]

important: this code assumes strictly positive objective values

for i in range(n):

for j in range(capacity+1):

if (weights[i] > j):

c[i][j] = c[i-1][j]

else:

c_add = obj[i] + c[i-1][j-weights[i]]

if c_add > c[i-1][j]:

c[i][j] = c_add

added[i][j] = True

else:

c[i][j] = c[i-1][j]

14

ISE 347/447 Lecture 16 15

Simple Knapsack Solver in Python (cont’d)

backtrack to find solution

i = n-1

j = capacity

solution = []

while i >= 0 and j >= 0:

if added[i][j]:

solution.append(i)

j -= weights[i]

i -= 1

return c[n-1][capacity], solution

15

ISE 347/447 Lecture 16 16

Stochastic Dynamic Programming

• The framework discussed here can be enhanced to include stochasticity.

• In other words, the transition occurring after a decision is to one of
several states, each with a certain given probability.

• For each state (i, j) and decision d ∈ S(i, j), we have a set of transition
states denoted by R((i, j), d).

• For each r ∈ R((i, j), d), we have a probability p((i, j), d, r) of transition
to state T ((i, j), d, r) with cost c((i, j), d, r).

• The objective function is stated in terms of expected values, so that the
(backward) recurrence becomes

v(i, j) = min
d∈S(i,j)

 ∑
r∈R((i,j),d)

p((i, j), d, r)[v(T ((i, j), d, r)) + c((i, j), d, r)]



16

