Financial Optimization ISE 347/447

Lecture 13

Dr. Ted Ralphs

Reading for This Lecture

• C&T Chapter 11

Integer Linear Optimization

- An integer linear optimization problem (ILP) is the same as a linear optimization problem except that the variables can take on only integer values.
- If only some of the variables are constrained to take on integer values, then we call the program a *mixed integer linear optimization problem* (MILP).
- The general form of an MILP is

$$min c^{\top}x + d^{\top}y$$

$$s.t. Ax + By = b$$

$$x, y \ge 0$$

$$x \in \mathbb{Z}^p \times \mathbb{R}^{n-p}$$

Mixed Integer Nonlinear Optimization Problem

- A mixed integer nonlinear optimization problem (MINLP) is the same as a nonlinear optimization problem except that the variables can take on only integer values.
- The general form of a MINLP is

$$\min f(x)$$
s.t. $g(x) \le 0$

$$h(x) = 0$$

$$x \in \mathbb{Z}^p \times \mathbb{R}^{n-p}$$

Modeling with Integer Variables

- Why do we need integer variables?
- If the variable is associated with a physical entity that is indivisible, then it must be integer.
 - Shares of a stock.
 - Investments that can only be made in fixed amounts.
- *0-1 (binary) variables* can be used to model logical conditions or combinatorial structure.
 - Modeling yes/no decisions.
 - Enforcing disjunctions.
 - Enforcing logical constraints.
 - Modeling fixed costs.
 - Modeling piecewise linear functions.

Conjunction versus Disjunction

• A more general mathematical view that ties integer programming to logic is to think of integer variables as expressing *disjunction*.

- The constraints of a standard mathematical program are *conjunctive*.
 - All constraints must be satisfied.
 - In terms of logic, we have

$$g_1(x) \le b_1 \text{ AND } g_2(x) \le b_2 \text{ AND } \cdots \text{ AND } g_m(x) \le b_m$$
 (1)

- This corresponds to *intersection* of the regions associated with each constraint.
- Integer variables introduce the possibility to model disjunction.
 - At least one constraint must be satisfied.
 - In terms of logic, we have

$$g_1(x) \le b_1 \text{ OR } g_2(x) \le b_2 \text{ OR } \cdots \text{ OR } g_m(x) \le b_m$$
 (2)

This corresponds to union of the regions associated with each constraint.

How Hard is Integer Programming?

• Solving general integer programs can be much more difficult than solving linear programs.

- There is no known polynomial-time algorithm for solving general MILPs.
- Solving the associated *linear programming relaxation* provides a lower bound on the optimal solution value of a given MILP.
- In general, an optimal solution to the LP relaxation may not tell us much about an optimal solution to the MILP.
 - Rounding to a feasible integer solution may be difficult.
 - The optimal solution to the LP relaxation can be arbitrarily far away from the optimal solution to the MILP.
 - Rounding may result in a solution far from optimal.
 - We can sometimes bound the difference between the optimal solution to the LP and the optimal solution to the MILP (how?).

The Geometry of Integer Programming

• Let's consider again an integer linear program

$$min$$
 $c^{\top}x$ $s.t.$ $Ax = b$ $x \ge 0$ $x \text{ integer}$

• The feasible region is the integer points inside a polyhedron.

• It is not difficult to see why solving the LP relaxation does not necessarily yield a solution near an integer optimum.

Easy Integer Programs

- Certain integer programs are "easy".
- What makes an integer program "easy"?
 - All of the extreme points of the LP relaxation are integral.
 - Every square submatrix of A has determinant +1, -1, or 0.
 - We know a complete description of the convex hull of feasible solutions.
 - We have an efficient algorithm for finding an optimal integer solution (not based on linear programming).
 - There is no duality gap (more on this later).
- Examples of "easy" integer programs.
 - Minimum cost network flow problem.
 - Maximum flow problem.
 - Assignment problem.

Modeling Binary Choice

- We use binary variables to model yes/no decisions.
- Example: Integer knapsack problem
 - We are given a set of items with associated values and weights.
 - We wish to select a subset of maximum value such that the total weight is less than a constant K.
 - We associate a 0-1 variable with each item indicating whether it is selected or not.

$$\max \sum_{j=1}^{m} c_{j} x_{j}$$

$$s.t. \sum_{j=1}^{m} w_{j} x_{j} \leq K$$

$$x \geq 0$$

$$x \quad integer$$

• Knapsack problems arise as subproblems in many financial applications.

Modeling Dependent Decisions

- We can also use binary variables to enforce the condition that a certain action can only be taken if some other action is also taken.
- Suppose x and y are variables representing whether or not to take certain actions.
- The constraint $x \leq y$ says "only take action x if action y is also taken".

Example: Portfolio Optimization

- Consider a portfolio optimization problem and suppose we want to avoid positions that are "too small."
- As before, let x_i be the size of the investment in asset i.
- As a first ideas, we could impose a constraint that says something like $x_i > 0 \Rightarrow x_i \ge l_i$.
- Possible implementations
 - Require investments in asset i to be multiples of l_i (by scaling variable x_i and requiring it to be integer).
 - Add a binary variable y_i that takes value 1 if the asset is purchased and 0 otherwise and use it enforce the constraint.
 - Use a branching disjunction (more on this later).

Variable Upper and Lower Bounds

• Variable bounds are bounds whose value is either 0 or some other constant, depending on the value of an associated binary variable.

ullet To impose a variable upper bound on variable x_i , we add an associated a binary variable y_i and the constraint

$$x_i \leq y_i u_i$$

- This constraint (along with nonnegativity) means that x_i must either take value 0 or have an upper bound of u_i .
- We can have both upper and lower bounds variable with the constraint

$$y_i l_i \le x_i \le y_i u_i$$

 We could use variable bounds to impose the minimum transaction level constraint.

Modeling Disjunctive Constraints

• More generally, we may be given two constraints $a^{\top}x \geq b$ and $c^{\top}x \geq d$ with nonnegative coefficients.

- We want to impose that at least one of the two constraints to be satisfied.
- To model this, we define a binary variable y and impose

$$a^{\top}x \geq yb,$$

 $c^{\top}x \geq (1-y)d,$
 $y \in \{0,1\}.$

• Further generalizing, we can impose that at least k out of m constraints be satisfied with

$$(a_i)^{\top} x \ge b_i y_i, \quad i \in [1..m]$$

$$\sum_{i=1}^m y_i \ge k,$$

$$y_i \in \{0, 1\}$$

Cardinality Constraints

- ullet Another approach to ensuring that a portfolio is not composed of many small positions is to impose an upper bound of K on the number of positions.
- This can be done using the same aforementioned indicator variables along with a constraint of the form

$$\sum_{i=1}^{n} y_i \le K$$

• Alternatively, this constraint could also be imposed using branching disjunctions without the indicator variables (more on this later).

Example: Simple Marwowitz Portfolio Model

```
model.assets = Set()
model.T = Set(initialize = range(1994, 2014))
model.max_risk = Param(initialize = .00305)
model.R = Param(model.T, model.assets)
def mean_init(model, j):
    return sum(model.R[i, j] for i in model.T)/len(model.T)
model.mean = Param(model.assets, initialize = mean_init)
def Cov_init(model, i, j):
    return sum((model.R[k, i] - model.mean[i])*(model.R[k, j] - model.mean[j])
                for k in model.T)
model.Cov = Param(model.assets, model.assets, initialize = Cov_init)
model.alloc = Var(model.assets, within=NonNegativeReals)
def risk_bound_rule(model):
    return (sum(sum(model.Cov[i, j] * model.alloc[i] * model.alloc[j]
                     for i in model.assets) for j in model.assets)
                     <= model.max_risk)</pre>
model.risk_bound = Constraint(rule=risk_bound_rule)
def tot_mass_rule(model):
    return (sum(model.alloc[j] for j in model.assets) == 1)
model.tot_mass = Constraint(rule=tot_mass_rule)
def objective_rule(model):
    return sum(model.alloc[j]*model.mean[j] for j in model.assets)
model.objective = Objective(sense=maximize, rule=objective_rule)
```

Example: Adding Cardinality Constraints

```
model.K = Param()
model.buy = Var(model.assets, within=NonNegativeIntegers)
def selection_rule(model, i):
    return (model.alloc[i] <= model.buy[i])
model.selection = Constraint(model.assets, rule=selection_rule)
def cardinality_rule(model):
    return (summation(model.buy) == model.K)
model.cardinality = Constraint(rule=cardinality_rule)</pre>
```

Example: Capital Budgeting

- Suppose we have \$4 million to invest in projects over the next three years.
- Each project has an associated cost and profit (in present value dollars) as follows:

	Year 1		Year 2		Year 3	
Project	Cost	Profit	Cost	Profit	Cost	Profit
1	0	0	0	0	0	0
2	1	2	1	3	1	2
3	2	4	3	9	2	5
4	4	10	-	-	_	-

Modeling a Restricted Set of Values

 Note that in each year, our decision is really just how much to invest in that year.

- One approach is therefore to have a single variable for each year and to restrict the value to be equal to one of the possible investment levels.
- More generally, we may want variable x to only take on values in the set $\{a_1, \ldots, a_m\}$.
- We introduce m binary variables $y_j, j = 1, \ldots, m$ and the constraints

$$x = \sum_{j=1}^{m} a_j y_j,$$
$$\sum_{j=1}^{m} y_j = 1,$$
$$y_j \in \{0, 1\}$$

ullet In fact, in this case, we don't actually need the variable x.

Set Partitioning, Packing, and Covering Problems

- Constraints of the form $\sum_{j \in T} x_j = 1$ can be used to enforce that exactly one item should be chosen from a set T.
- Similarly, we can also require that at most one or at least one item should be chosen.
- Example: Set partitioning problem
 - A set partitioning problem is any problem of the form

$$min c^{\top} x$$

$$s.t. \quad Ax = 1$$

$$x_j \in \{0, 1\} \, \forall j$$

where A is a 0-1 matrix.

- Each row of A represents an item from a set S.
- Each column A_j represents a subset S_j of S.
- Each variable x_i represents selecting subset S_i .
- The constraints say that $\bigcup_{\{j|x_j=1\}} S_j = S$.
- In other words, each item must appear in at least one selected subset.

Example: Combinatorial Auctions

• The winner determination problem for a *combinatorial auction* is a set packing problem.

- The rows represent items or services that a buyer is trying to acquire.
- The columns represent subsets of the items that a particular supplier can provide for a specified cost.
- The object is to select a subset of the bidders such that
 - cost is minimized, and
 - every item is provided by at least one bidder.
- This is a set covering problem.

Piecewise Linear Cost Functions

 We can use binary variables to model arbitrary piecewise linear cost functions.

- We could use such a model to solve a version of the capital budgeting problem in which we are allowed to invest in multiple projects, in whole or in part.
- The function is specified by ordered pairs $(a_i, f(a_i))$ and we wish to evaluate it at a point x.
- We have a binary variable y_i , which indicates whether $a_i \leq x \leq a_{i+1}$.
- To evaluate the function, we will take linear combinations $\sum_{i=1}^k \lambda_i f(a_i)$ of the given functions values.
- This works only if the only two nonzero $\lambda_i's$ are the ones corresponding to the endpoints of the interval in which x lies.

Minimizing Piecewise Linear Cost Functions

• The following formulation minimizes the function.

$$min \sum_{i=1}^{k} \lambda_{i} f(a_{i})$$

$$s.t. \sum_{i=1}^{k} \lambda_{i} = 1,$$

$$\lambda_{1} \leq y_{1},$$

$$\lambda_{i} \leq y_{i-1} + y_{i}, \quad i \in [2..k - 1],$$

$$\lambda_{k} \leq y_{k-1},$$

$$\sum_{i=1}^{k-1} y_{i} = 1,$$

$$\lambda_{i} \geq 0,$$

$$y_{i} \in \{0, 1\}.$$

• The key is that if $y_j = 1$, then $\lambda_i = 0, \ \forall i \neq j, j+1$.

Fixed-charge Problems

• In many instances, there is a fixed cost and a variable cost associated with a particular decision.

- For example, there might be a fixed cost to certain financial transactions, regardless of the amount transacted.
- Consider the problem of converting B units of currency 1 into currency N through a sequence of intermediate transactions in currencies 2 through N-1.
 - To convert current i into a set of other currencies, there is a fixed cost of c_i (in terms of currency N).
 - There is also an associated exchange rate r_{ij} .
 - There is a cap u_i on the total amount of currency i that can be converted.
 - The goal is to end up with as much of currency N as possible.

Modeling the Currency Exchange Problem

• The decision to be made is how much of each currency to exchange for each other currency. So variables in this case are

 $y_i =$ whether any of currency i is exchanged for other currencies $x_{ij} =$ amount of currency i exchanged for currency j

- Note that the amount of currency j we end up with after exchanging from i is $r_{ij}x_{ij}$.
- Ultimately, we want to end up with as much of currency N as possible, so our objective function is the amount of all other currencies exchanged into currency N:

$$\max \sum_{i=1}^{N-1} r_{iN} x_{iN} - \sum_{i=1}^{n} c_i y_i.$$

Modeling the Currency Exchange Problem (cont.)

- For notational convenience, we assume that $x_{ii} = 0 \ \forall i \in [1..N]$.
- For every currency $j \neq 1$, the amount available for exchange is $\sum_{i=1}^{N-1} r_{ij} x_{ij}$ and the amount actually exchanged is $\sum_{j=2}^{N} x_{ij}$.
- The constraints are then

$$\sum_{j=2}^{N} x_{ij} \leq y_{i}u_{i}, \quad \forall i \in [1..N],$$

$$\sum_{i=1}^{N-1} r_{ij}x_{ij} \geq \sum_{k=2}^{N} x_{jk}, \forall j \in [2..N-1],$$

$$\sum_{i=1}^{N} x_{1j} \leq B, \text{ and}$$

$$x_{ij} \geq 0, \quad \forall i \in [1..N-1], j \in [2..N].$$

$$y_{i} \in \{0,1\}, \ \forall i \in [1..N-1]$$

Modeling the Currency Exchange Problem (cont.)

This gives us a integer programming formulation that looks like

$$\max \sum_{i=1}^{N} r_{iN} x_{iN} - c_{i} y_{i}$$

$$s.t. \qquad \sum_{j=1}^{N} x_{ij} \leq y_{i} u_{i}, \quad \forall \ i \in [1..N],$$

$$\sum_{i=1}^{N} r_{ij} x_{ij} \leq \sum_{k=1}^{N} x_{jk}, \forall \ j \in [2..N-1],$$

$$\sum_{j=1}^{N} x_{1j} \leq B,$$

$$x_{ij} \geq 0, \quad \forall \ i \in [1..N-1], j \in [2..N],$$

$$y_{i} \in \{0,1\}, \quad \forall \ i \in [1..N-1].$$

Distinguishing "Formulations" and "Models"

- The modeling process consists generally of the following steps.
 - Determine the "real-world" state variables, system constraints, and goal(s) or objective(s) for operating the system.
 - Translate these variables and constraints into the form of a mathematical optimization problem (the "formulation").
 - Solve the mathematical optimization problem.
 - Interpret the solution in terms of the real-world system.
- This process presents many challenges.
 - Simplifications may be required in order to ensure the eventual mathematical program is "tractable".
 - The mappings from the real-world system to the model and back are sometimes not very obvious.
 - There may be more than one valid "formulation".
- All in all, an intimate knowledge of mathematical optimization definitely helps during the modeling process.

The Importance of Fomulation

- Different formulations for the same problem can result in dramatically different in terms of tractability.
- ullet Simple example: two ways of modeling binary variables x.

```
-x \in \{0,1\}
-x = x^2
```

- The first formulation is integer linear, while the second formulation is nonlinear continuous.
- These would be solved with two entirely different classes of algorithms.
- As a rulse of thumb, the first formulation is preferred.