
Financial Optimization
ISE 347/447

Lecture 13

Dr. Ted Ralphs

ISE 347/447 Lecture 13 1

Reading for This Lecture

• C&T Chapter 11

1

ISE 347/447 Lecture 13 2

Integer Linear Optimization

• An integer linear optimization problem (ILP) is the same as a linear
optimization problem except that the variables can take on only integer
values.

• If only some of the variables are constrained to take on integer values,
then we call the program a mixed integer linear optimization problem
(MILP).

• The general form of an MILP is

min c>x+ d>y

s.t. Ax+By = b

x, y ≥ 0

x ∈ Zp × Rn−p

2

ISE 347/447 Lecture 13 3

Mixed Integer Nonlinear Optimization Problem

• A mixed integer nonlinear optimization problem (MINLP) is the same as
a nonlinear optimization problem except that the variables can take on
only integer values.

• The general form of a MINLP is

min f(x)

s.t. g(x) ≤ 0

h(x) = 0

x ∈ Zp × Rn−p

3

ISE 347/447 Lecture 13 4

Modeling with Integer Variables

• Why do we need integer variables?

• If the variable is associated with a physical entity that is indivisible, then
it must be integer.

– Shares of a stock.
– Investments that can only be made in fixed amounts.

• 0-1 (binary) variables can be used to model logical conditions or
combinatorial structure.

– Modeling yes/no decisions.
– Enforcing disjunctions.
– Enforcing logical constraints.
– Modeling fixed costs.
– Modeling piecewise linear functions.

4

ISE 347/447 Lecture 13 5

Conjunction versus Disjunction

• A more general mathematical view that ties integer programming to logic
is to think of integer variables as expressing disjunction.

• The constraints of a standard mathematical program are conjunctive.

– All constraints must be satisfied.
– In terms of logic, we have

g1(x) ≤ b1 AND g2(x) ≤ b2 AND · · · AND gm(x) ≤ bm (1)

– This corresponds to intersection of the regions associated with each
constraint.

• Integer variables introduce the possibility to model disjunction.

– At least one constraint must be satisfied.
– In terms of logic, we have

g1(x) ≤ b1 OR g2(x) ≤ b2 OR · · · OR gm(x) ≤ bm (2)

– This corresponds to union of the regions associated with each
constraint.

5

ISE 347/447 Lecture 13 6

How Hard is Integer Programming?

• Solving general integer programs can be much more difficult than solving
linear programs.

• There is no known polynomial-time algorithm for solving general MILPs.

• Solving the associated linear programming relaxation provides a lower
bound on the optimal solution value of a given MILP.

• In general, an optimal solution to the LP relaxation may not tell us much
about an optimal solution to the MILP.

– Rounding to a feasible integer solution may be difficult.
– The optimal solution to the LP relaxation can be arbitrarily far away

from the optimal solution to the MILP.
– Rounding may result in a solution far from optimal.
– We can sometimes bound the difference between the optimal solution

to the LP and the optimal solution to the MILP (how?).

6

ISE 347/447 Lecture 13 7

The Geometry of Integer Programming

• Let’s consider again an integer linear program

min c>x

s.t. Ax = b

x ≥ 0

x integer

• The feasible region is the integer points inside a polyhedron.

• It is not difficult to see why solving the LP relaxation does not necessarily
yield a solution near an integer optimum.

7

ISE 347/447 Lecture 13 8

Easy Integer Programs

• Certain integer programs are “easy”.

• What makes an integer program “easy”?

– All of the extreme points of the LP relaxation are integral.
– Every square submatrix of A has determinant +1, -1, or 0.
– We know a complete description of the convex hull of feasible solutions.
– We have an efficient algorithm for finding an optimal integer solution

(not based on linear programming).
– There is no duality gap (more on this later).

• Examples of “easy” integer programs.

– Minimum cost network flow problem.
– Maximum flow problem.
– Assignment problem.

8

ISE 347/447 Lecture 13 9

Modeling Binary Choice

• We use binary variables to model yes/no decisions.

• Example: Integer knapsack problem

– We are given a set of items with associated values and weights.
– We wish to select a subset of maximum value such that the total

weight is less than a constant K.
– We associate a 0-1 variable with each item indicating whether it is

selected or not.

max

m∑
j=1

cjxj

s.t.

m∑
j=1

wjxj ≤K

x≥ 0

x integer

• Knapsack problems arise as subproblems in many financial applications.

9

ISE 347/447 Lecture 13 10

Modeling Dependent Decisions

• We can also use binary variables to enforce the condition that a certain
action can only be taken if some other action is also taken.

• Suppose x and y are variables representing whether or not to take certain
actions.

• The constraint x ≤ y says “only take action x if action y is also taken”.

10

ISE 347/447 Lecture 13 11

Example: Portfolio Optimization

• Consider a portfolio optimization problem and suppose we want to avoid
positions that are “too small.”

• As before, let xi be the size of the investment in asset i.

• As a first ideas, we could impose a constraint that says something like
xi > 0⇒ xi ≥ li.

• Possible implementations

– Require investments in asset i to be multiples of li (by scaling variable
xi and requiring it to be integer).

– Add a binary variable yi that takes value 1 if the asset is purchased
and 0 otherwise and use it enforce the constraint.

– Use a branching disjunction (more on this later).

11

ISE 347/447 Lecture 13 12

Variable Upper and Lower Bounds

• Variable bounds are bounds whose value is either 0 or some other
constant, depending on the value of an associated binary variable.

• To impose a variable upper bound on variable xi, we add an associated
a binary variable yi and the constraint

xi ≤ yiui

• This constraint (along with nonnegativity) means that xi must either
take value 0 or have an upper bound of ui.

• We can have both upper and lower bounds variable with the constraint

yili ≤ xi ≤ yiui

• We could use variable bounds to impose the minimum transaction level
constraint.

12

ISE 347/447 Lecture 13 13

Modeling Disjunctive Constraints

• More generally, we may be given two constraints a>x ≥ b and c>x ≥ d
with nonnegative coefficients.

• We want to impose that at least one of the two constraints to be
satisfied.

• To model this, we define a binary variable y and impose

a>x ≥ yb,

c>x ≥ (1− y)d,
y ∈ {0, 1}.

• Further generalizing, we can impose that at least k out of m constraints
be satisfied with

(ai)
>x≥ biyi, i ∈ [1..m]

m∑
i=1

yi≥ k,

yi ∈ {0, 1}

13

ISE 347/447 Lecture 13 14

Cardinality Constraints

• Another approach to ensuring that a portfolio is not composed of many
small positions is to impose an upper bound of K on the number of
positions.

• This can be done using the same aforementioned indicator variables along
with a constraint of the form

n∑
i=1

yi ≤ K

• Alternatively, this constraint could also be imposed using branching
disjunctions without the indicator variables (more on this later).

14

ISE 347/447 Lecture 13 15

Example: Simple Marwowitz Portfolio Model

model.assets = Set()

model.T = Set(initialize = range(1994, 2014))

model.max_risk = Param(initialize = .00305)

model.R = Param(model.T, model.assets)

def mean_init(model, j):

return sum(model.R[i, j] for i in model.T)/len(model.T)

model.mean = Param(model.assets, initialize = mean_init)

def Cov_init(model, i, j):

return sum((model.R[k, i] - model.mean[i])*(model.R[k, j] - model.mean[j])

for k in model.T)

model.Cov = Param(model.assets, model.assets, initialize = Cov_init)

model.alloc = Var(model.assets, within=NonNegativeReals)

def risk_bound_rule(model):

return (sum(sum(model.Cov[i, j] * model.alloc[i] * model.alloc[j]

for i in model.assets) for j in model.assets)

<= model.max_risk)

model.risk_bound = Constraint(rule=risk_bound_rule)

def tot_mass_rule(model):

return (sum(model.alloc[j] for j in model.assets) == 1)

model.tot_mass = Constraint(rule=tot_mass_rule)

def objective_rule(model):

return sum(model.alloc[j]*model.mean[j] for j in model.assets)

model.objective = Objective(sense=maximize, rule=objective_rule)

15

ISE 347/447 Lecture 13 16

Example: Adding Cardinality Constraints

model.K = Param()

model.buy = Var(model.assets, within=NonNegativeIntegers)

def selection_rule(model, i):

return (model.alloc[i] <= model.buy[i])

model.selection = Constraint(model.assets, rule=selection_rule)

def cardinality_rule(model):

return (summation(model.buy) == model.K)

model.cardinality = Constraint(rule=cardinality_rule)

16

ISE 347/447 Lecture 13 17

Example: Capital Budgeting

• Suppose we have $4 million to invest in projects over the next three
years.

• Each project has an associated cost and profit (in present value dollars)
as follows:

Year 1 Year 2 Year 3
Project Cost Profit Cost Profit Cost Profit

1 0 0 0 0 0 0
2 1 2 1 3 1 2
3 2 4 3 9 2 5
4 4 10 - - - -

17

ISE 347/447 Lecture 13 18

Modeling a Restricted Set of Values

• Note that in each year, our decision is really just how much to invest in
that year.

• One approach is therefore to have a single variable for each year and to
restrict the value to be equal to one of the possible investment levels.

• More generally, we may want variable x to only take on values in the set
{a1, . . . , am}.

• We introduce m binary variables yj, j = 1, . . . ,m and the constraints

x =

m∑
j=1

ajyj,

m∑
j=1

yj = 1,

yj ∈ {0, 1}

• In fact, in this case, we don’t actually need the variable x.

18

ISE 347/447 Lecture 13 19

Set Partitioning, Packing, and Covering Problems

• Constraints of the form
∑

j∈T xj = 1 can be used to enforce that exactly
one item should be chosen from a set T .

• Similarly, we can also require that at most one or at least one item should
be chosen.

• Example: Set partitioning problem

– A set partitioning problem is any problem of the form

min c>x

s.t. Ax = 1

xj ∈ {0, 1} ∀j
where A is a 0-1 matrix.

– Each row of A represents an item from a set S.
– Each column Aj represents a subset Sj of S.
– Each variable xj represents selecting subset Sj.
– The constraints say that ∪{j|xj=1}Sj = S.
– In other words, each item must appear in at least one selected subset.

19

ISE 347/447 Lecture 13 20

Example: Combinatorial Auctions

• The winner determination problem for a combinatorial auction is a set
packing problem.

• The rows represent items or services that a buyer is trying to acquire.

• The columns represent subsets of the items that a particular supplier can
provide for a specified cost.

• The object is to select a subset of the bidders such that

– cost is minimized, and
– every item is provided by at least one bidder.

• This is a set covering problem.

20

ISE 347/447 Lecture 13 21

Piecewise Linear Cost Functions

• We can use binary variables to model arbitrary piecewise linear cost
functions.

• We could use such a model to solve a version of the capital budgeting
problem in which we are allowed to invest in multiple projects, in whole
or in part.

• The function is specified by ordered pairs (ai, f(ai)) and we wish to
evaluate it at a point x.

• We have a binary variable yi, which indicates whether ai ≤ x ≤ ai+1.

• To evaluate the function, we will take linear combinations
∑k

i=1 λif(ai)
of the given functions values.

• This works only if the only two nonzero λ′is are the ones corresponding
to the endpoints of the interval in which x lies.

21

ISE 347/447 Lecture 13 22

Minimizing Piecewise Linear Cost Functions

• The following formulation minimizes the function.

min

k∑
i=1

λif(ai)

s.t.

k∑
i=1

λi = 1,

λ1 ≤ y1,
λi ≤ yi−1 + yi, i ∈ [2..k − 1],

λk ≤ yk−1,
k−1∑
i=1

yi = 1,

λi ≥ 0,

yi ∈ {0, 1}.

• The key is that if yj = 1, then λi = 0, ∀i 6= j, j + 1.

22

ISE 347/447 Lecture 13 23

Fixed-charge Problems

• In many instances, there is a fixed cost and a variable cost associated
with a particular decision.

• For example, there might be a fixed cost to certain financial transactions,
regardless of the amount transacted.

• Consider the problem of converting B units of currency 1 into currency N
through a sequence of intermediate transactions in currencies 2 through
N − 1.

– To convert current i into a set of other currencies, there is a fixed cost
of ci (in terms of currency N).

– There is also an associated exchange rate rij.
– There is a cap ui on the total amount of currency i that can be

converted.
– The goal is to end up with as much of currency N as possible.

23

ISE 347/447 Lecture 13 24

Modeling the Currency Exchange Problem

• The decision to be made is how much of each currency to exchange for
each other currency. So variables in this case are
yi = whether any of currency i is exchanged for other currencies
xij = amount of currency i exchanged for currency j

• Note that the amount of currency j we end up with after exchanging
from i is rijxij.

• Ultimately, we want to end up with as much of currency N as possible,
so our objective function is the amount of all other currencies exchanged
into currency N :

max

N−1∑
i=1

riNxiN −
n∑

i=1

ciyi.

24

ISE 347/447 Lecture 13 25

Modeling the Currency Exchange Problem (cont.)

• For notational convenience, we assume that xii = 0 ∀i ∈ [1..N].

• For every currency j 6= 1, the amount available for exchange is∑N−1
i=1 rijxij and the amount actually exchanged is

∑N
j=2 xij.

• The constraints are then
N∑
j=2

xij ≤ yiui, ∀ i ∈ [1..N],

N−1∑
i=1

rijxij ≥
N∑

k=2

xjk, ∀ j ∈ [2..N − 1],

N∑
j=2

x1j ≤ B, and

xij ≥ 0, ∀ i ∈ [1..N − 1], j ∈ [2..N].

yi ∈ {0, 1}, ∀ i ∈ [1..N − 1]

25

ISE 347/447 Lecture 13 26

Modeling the Currency Exchange Problem (cont.)

This gives us a integer programming formulation that looks like

max

N∑
i=1

riNxiN − ciyi

s.t.

N∑
j=1

xij ≤ yiui, ∀ i ∈ [1..N],

N∑
i=1

rijxij ≤
N∑

k=1

xjk, ∀ j ∈ [2..N − 1],

N∑
j=1

x1j ≤B,

xij ≥ 0, ∀ i ∈ [1..N − 1], j ∈ [2..N],

yi ∈ {0, 1}, ∀ i ∈ [1..N − 1].

26

ISE 347/447 Lecture 13 27

Distinguishing “Formulations” and “Models”

• The modeling process consists generally of the following steps.

– Determine the “real-world” state variables, system constraints, and
goal(s) or objective(s) for operating the system.

– Translate these variables and constraints into the form of a
mathematical optimization problem (the “formulation”).

– Solve the mathematical optimization problem.
– Interpret the solution in terms of the real-world system.

• This process presents many challenges.

– Simplifications may be required in order to ensure the eventual
mathematical program is “tractable”.

– The mappings from the real-world system to the model and back are
sometimes not very obvious.

– There may be more than one valid “formulation”.

• All in all, an intimate knowledge of mathematical optimization definitely
helps during the modeling process.

27

ISE 347/447 Lecture 13 28

The Importance of Fomulation

• Different formulations for the same problem can result in dramatically
different in terms of tractability.

• Simple example: two ways of modeling binary variables x.

– x ∈ {0, 1}
– x = x2

• The first formulation is integer linear, while the second formulation is
nonlinear continuous.

• These would be solved with two entirely different classes of algorithms.

• As a rulse of thumb, the first formulation is preferred.

28

