Financial Optimization ISE 347/447

Lecture 12

Dr. Ted Ralphs

Reading for This Lecture

• C&T Chapter 8

Parameter Estimation in Portfolio Optimization

- To use Markovitz portfolio optimization in practice, one has to estimate the parameters μ_i and Q_{ij} $(i=1,\ldots,n)$ from historical data.
- ullet For recent previous investment periods $[t_{k-1},t_k]$ $(k=1,\ldots,T)$ having the same length as the current investment period, we can compute the returns

$$r_k^i = \frac{S_{t_k}^i - S_{t_{k-1}}^i}{S_{t_{k-1}}^i}.$$

• These numbers can be seen as independent samples of the distribution of R_i .

Method 1: Sample returns and covariances

• A simple approach is to estimate μ_i as the sample average return of asset i over the T previous investment periods,

$$\widehat{\mu}_i = \frac{1}{T} \sum_{k=1}^T r_k^i.$$

• The covariance Q_{ij} can be estimated similarly as

$$\widehat{Q}_{ij} = \frac{1}{T-1} \sum_{k=1}^{T} (r_k^i - \widehat{\mu}_i) (r_k^j - \widehat{\mu}_j).$$

Method 2: Capital Asset Pricing Model (CAPM)

• A far better method for estimating μ and Q from historical data is to use a market index S^m as a benchmark.

Samples

$$r_k^m = \frac{S_{t_k}^m - S_{t_{k-1}}^m}{S_{t_{k-1}}^m}$$

of the random market return \mathbb{R}^m are computed the same way as for other assets.

• Likewise, the risk-free returns r_k^f over the same periods can be obtained.

The CAPM Model

The aim is to find a model

$$r_k^i = r_k^f + \beta_i (r_k^m - r_k^f) + \varepsilon_k^i$$

that explains the excess return of the $i^{\rm th}$ asset over the risk-free return as a sum of two parts:

- ullet $eta_i(r_k^m-r_k^f)$ is fully explained by asset i's correlation with the market,
- ε_k^i is independent of the market and due to an unknown level of idiosyncratic risk σ_i^2 associated with asset i.
 - We interpret ε_k^i $(k=1,\ldots,T)$ as i.i.d. samples of a Gaussian random variable $\mathcal{E}^i \sim \mathbb{N}(0,\sigma_i^2)$.
 - This part of the return is also thought of as being independent between different assets.

Fitting the Model

 We choose the model that minimizes the sample estimate of the idiosyncratic risk,

$$\sigma_i^2 = \min_{\beta_i} \frac{1}{T - 1} \sum_{i=1}^n (r_k^i - r_k^f - \beta_i (r_k^m - r_k^f))^2,$$

$$\beta_i = \arg\min_{\beta_i} \frac{1}{T-1} \sum_{i=1}^n (r_k^i - r_k^f - \beta_i (r_k^m - r_k^f))^2.$$

• Taking derivatives with respect to β_i , it is easy to check that

$$\beta_i = \frac{\sum_k (r_k^i - r_k^f)(r_k^m - r_k^f)}{\sum_k (r_k^m - r_k^f)^2}.$$

• Under the CAPM model, one then stipulates

$$R_i = r_f + \beta_i (R_m - r_f) + \mathcal{E}^i.$$

The Estimators

• Therefore,

$$\mu_i = r_f + \beta_i (\mathbb{E}[R^m] - r_f),$$

$$Q_{ij} = \text{Cov}(r_f + \beta_i (R^m - r_f) + \mathcal{E}^i, r_f + \beta_j (R^m - r_f) + \mathcal{E}^j)$$

$$= \beta_i \beta_j \sigma^2 (R^m) + \delta_{ij} \sigma_i \sigma_j,$$

where δ_{ij} is the Kronecker delta.

• Replacing $\mathbb{E}[R^m]$ and $\sigma^2(R^m)$ by their sample estimators

$$\widehat{\mu}_{m} = T^{-1} \sum_{k} r_{k}^{m},$$

$$\widehat{\sigma}_{m}^{2} = \frac{1}{T-1} \sum_{k} (r_{k}^{m} - \widehat{\mu}_{m})^{2},$$

we obtain the estimators

$$\widehat{\mu}_i = r_f + \beta_i \left(\widehat{\mu}_m - r_f \right),$$

$$\widehat{Q}_{ij} = \beta_i \beta_j \widehat{\sigma}_m^2 + \delta_{ij} \sigma_i \sigma_j.$$

The Multifactor CAPM Model

• The CAPM model can be generalized by replacing the benchmark index S^m with multiple indices S^{m_1}, \ldots, S^{m_q} for which samples

$$r_k^{m_j} = \frac{S_{t_k}^{m_j} - S_{t_{k-1}}^{m_j}}{S_{t_{k-1}}^{m_j}}$$

are available.

The aim is now to find the best-fitting linear model

$$r_{k}^{i} = r_{k}^{f} + \sum_{j=1}^{q} \beta_{i}^{j} (r_{k}^{m_{j}} - r_{k}^{f}) + \varepsilon_{k}^{i},$$

in full analogy to the above model.

Fitting the Multifactor Model

 We again choose the model that minimizes the sample estimate of the idiosyncratic risk,

$$\sigma_i^2 = \min_{(\beta_i^1, \dots, \beta_i^q)} \frac{1}{T - 1} \sum_{i=1}^n \left(r_k^i - r_k^f - \sum_{j=1}^q \beta_i^j (r_k^{m_j} - r_k^f) \right)^2,$$

$$(\beta_i^1, \dots, \beta_i^q) = \arg\min_{(\beta_i^1, \dots, \beta_i^q)} \frac{1}{T - 1} \sum_{i=1}^n \left(r_k^i - r_k^f - \sum_{j=1}^q \beta_i^j (r_k^{m_j} - r_k^f) \right)^2.$$

• This is a strictly convex quadratic optimization problem when $T \geq q$, so the optimizer $(\beta_i^1, \ldots, \beta_i^q)$ can be computed by solving the linear system

$$\nabla_{(\beta_i^1, \dots, \beta_i^q)} \sum_{i=1}^n \left(r_k^i - r_k^f - \sum_{j=1}^q \beta_i^j (r_k^{m_j} - r_k^f) \right)^2 = 0.$$
 (1)

The Estimators

• Let $B = (\beta_i^j)$ be the matrix of coefficients obtained when solving (1) for (i = 1, ..., n).

The multifactor CAPM model stipulates that

$$R = r_f e + B(P - r_f e) + \mathcal{E},$$

where $P = [P_1 \ldots P_q]^{\top}$ is the unknown random vector of returns

$$P_j = \frac{S_1^{m_j} - S_0^{m_j}}{S_0^{m_j}}$$

of the chosen indices over the investment period [0,1].

The Estimators (cont.)

• Therefore,

$$\mu = r_f e + B(\mathbb{E}[P] - r_f e),$$

$$Q = B \operatorname{Cov}(P) B^{\top} + \operatorname{Diag}(\sigma_1^2, \dots, \sigma_n^2),$$

where Cov(P) is the variance-covariance matrix of P.

• Replacing $\mathbb{E}[P]$ and $\mathrm{Cov}(P)$ by their sample estimates yields the CAPM estimators for μ and Q.

The Black-Litterman Model

- This is really a method for estimating the vector μ of expected returns.
- The resulting estimates can be used in conjunction with any portfolio optimization model.
- As before, we assume an investment universe consists of n risky assets S^1, \ldots, S^n and one risk-free asset S^0 with returns R^1, \ldots, R^n (random) and r_f (deterministic) respectively over the investment period [0,1].
- ullet We write $ilde{R}=\left[egin{array}{c} r_f \ R \end{array}
 ight]$, $ilde{\mu}=\left[egin{array}{c} r_f \ \mu \end{array}
 ight]$ and

$$\tilde{Q} = \operatorname{Cov}(\tilde{R}) = \begin{pmatrix} 0 & 0 \\ 0 & Q \end{pmatrix},$$

where Q = Cov(R).

Key Assumptions

1. All investors use the investment strategy that maximizes

(M)
$$\max_{\tilde{x} \in \mathbb{R}^{n+1}} \tilde{\pi}^{\top} \tilde{x} - \lambda \tilde{x}^{\top} \tilde{Q} \tilde{x}$$

s.t. $\sum_{i=0}^{n} \tilde{x}_i = 1$,

where $\tilde{\pi} = \begin{bmatrix} r_f \\ \pi \end{bmatrix}$ is an unknown vector of expected returns.

- 2. λ and Q are known (in reality this means they have already been estimated via some method of choice).
- 3. μ is itself modelled as a random vector $\mu = \pi + \nu$, where π is a return vector implied by the market and $\nu \sim N(0, \tau Q)$ for some small τ

Key Assumptions (cont.)

The motivation for Assumption 3 is that if $R \sim N(\mu, Q)$ and R^1, \ldots, R^T are T independent samples of R, then the sample mean

$$\widehat{\mu} = \frac{1}{T} \sum_{i=1}^{T} R^i$$

has distribution $N(\mu, T^{-1}Q)$.

Features of the Model

• The key distinguishing feature of the model is to allow investors to *specify* their beliefs about the performance of certain portfolios.

- This information is taken into account by updating the a priori estimate π of μ in a Bayes-like fashion to obtain an improved estimator.
- A key concept is the return implied by the market.
- Let \tilde{w} be the relative weights of the assets in the market capitalization, i.e.,

$$\tilde{w}_i = \frac{z_i S^i}{\sum_{i=0}^n z_i S^i},$$

where z_i is the number of shares of asset i that exist in the market and S^i the value of each share.

The Return Implied by the Market

- If Assumption 1 holds, \tilde{w} must be the maximizer of (M).
- Otherwise the market would not be at equilibrium and prices would quickly adjust.
- Mathematically, this implies that \tilde{w} has to satisfy the KKT conditions of (M),

$$\tilde{\pi} - 2\lambda \tilde{Q}\tilde{w} - \eta e^{[n+1]} = 0 \tag{2}$$

$$\sum_{i=0}^{n} \tilde{w}_i = 1. \tag{3}$$

• Here η is an unknown Lagrange multiplier, and $e^{[n+1]}$ is the n+1-dimensional vector of ones.

The Return Implied by the Market (cont.)

• Recalling that by Assumption 2, λ and \tilde{Q} are known, we can solve for π .

Since

$$\tilde{Q} = \operatorname{Cov}(\tilde{R}) = \begin{pmatrix} 0 & 0 \\ 0 & Q \end{pmatrix},$$

the first line of (2) reads $\eta = r_f$.

• Therefore,

$$\pi = r_f e^{[n]} + 2\lambda Qw.$$

• Having computed π , we now know the a priori distribution of μ ,

$$\mu \sim N(\pi, \tau Q).$$

• This is the *return implied by the market*.

Beliefs About the Market

- Market equilibrium is never quite reached because investors process new information at different speeds.
- Fund managers who process information faster than others therefore want the expected returns to reflect their insight or beliefs about where the market is headed next.
- ullet For example, a manager who believes that the return of asset i is expected to outperform that of asset j by 2% would want μ to satisfy the constraint

$$\mu_i - \mu_j = 0.02.$$

Modeling Market Beliefs

• More generally, the fund manager may have several such beliefs concerning the expected returns of certain portfolios constructed from the risky assets S^1, \ldots, S^n , resulting in the constraints

$$A\mu = b$$
,

where A is a $k \times n$ -matrix and b a k-dimensional vector.

 A natural way of incorporating such beliefs into the parameter estimation problem is to use the conditional expectation

$$\widehat{\mu} = \mathbb{E}\left[\mu \mid A\mu = b\right]$$

as the estimator of the expected returns of assets S^1, \ldots, S^n .

Conditioning on Beliefs

• The conditional density of μ given $A\mu = b$ is

$$f(\mu \mid A\mu = b) = \frac{\exp\{-\frac{1}{2}(\mu - \pi)^{\top}(\tau Q)^{-1}(\mu - \pi)\}}{\int_{\{x:Ax=b\}} \exp\{-\frac{1}{2}(x - \pi)^{\top}(\tau Q)^{-1}(x - \pi)\}dx}$$

- Thus, the conditional distribution $\mathcal{D}(\mu \mid A\mu = b)$ is a multivariate Gaussian centered at $\widehat{\mu}$, which is where $f(\mu \mid A\mu = b)$ is maximized.
- Therefore, $\hat{\mu}$ is the minimizer of the convex QP

(P)
$$\min_{\mu} (\mu - \pi)^{\top} (\tau Q)^{-1} (\mu - \pi)$$

s.t. $A\mu = b$.

The Estimators

• Thus, $\widehat{\mu}$ is determined by the KKT conditions of problem (P):

$$(\tau Q)^{-1}(\widehat{\mu} - \pi) = A^{\top} \eta \tag{4}$$

$$A\widehat{\mu} = b, \tag{5}$$

where η is a vector of Lagrange multipliers.

• From (4) we get

$$\widehat{\mu} = \pi + \tau Q A^{\top} \eta,$$
 (6) and from (5), $b = A \widehat{\mu} = A \pi + \tau A Q A^{\top} \eta.$

• Hence,

$$\eta = (\tau A Q A^{\top})^{-1} (b - A\pi)$$

and

$$\widehat{\mu} = \pi + QA^{\top} (AQA^{\top})^{-1} (b - A\pi). \tag{7}$$

Strength of Beliefs

- In reality, fund managers are never quite certain about their predictions.
- ullet Therefore, we can also add randomness to the belief system $A\mu=b$ by expressing it as

$$A\mu = b + \mathcal{E},\tag{8}$$

where $\mathcal{E} \sim N(0, D)$ is a multivariate normal with zero mean and diagonal covariance matrix $D = \text{Diag}(\sigma_1^2, \dots, \sigma_n^2)$.

- In other words, the uncertainties pertaining to different constraints are considered to be independent.
- The larger the parameter σ_i^2 , the less certain the investor is about the belief encoded in the i^{th} row of the system (8).

Incorporating Uncertain Beliefs

• Beliefs of the form $A\mu = b + \mathcal{E}$ cannot be conditioned upon, as they do not express an event.

ullet With some messy algebra, we can show that the generalized posterior distribution of μ is

$$\mathcal{D}(\mu \mid A\mu = b + \mathcal{E}) = N(\widehat{\mu}, [(\tau Q)^{-1} + A^{\top} D^{-1} A]^{-1}),$$

where

$$\widehat{\mu} = [(\tau Q)^{-1} + A^{\top} D^{-1} A]^{-1} [(\tau Q)^{-1} \pi + A^{\top} D^{-1} b].$$

is the generalized posterior estimator of μ .

• Note that as uncertainty about the beliefs grows, $\widehat{\mu}$ tends to the a priori estimator π ,

$$\lim_{D \to \infty} \widehat{\mu} = [(\tau Q)^{-1}]^{-1} (\tau Q)^{-1} \pi = \pi,$$

as one would expect.