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Reading for This Lecture

• C&T Chapter 8

1



ISE 347/447 Lecture 12 2

Parameter Estimation in Portfolio Optimization

• To use Markovitz portfolio optimization in practice, one has to estimate
the parameters µi and Qij (i = 1, . . . , n) from historical data.

• For recent previous investment periods [tk−1, tk] (k = 1, . . . , T ) having
the same length as the current investment period, we can compute the
returns

rik =
Sitk − S

i
tk−1

Sitk−1
.

• These numbers can be seen as independent samples of the distribution
of Ri.
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Method 1: Sample returns and covariances

• A simple approach is to estimate µi as the sample average return of asset
i over the T previous investment periods,

µ̂i =
1

T

T∑
k=1

rik.

• The covariance Qij can be estimated similarly as

Q̂ij =
1

T − 1

T∑
k=1

(rik − µ̂i)(r
j
k − µ̂j).
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Method 2: Capital Asset Pricing Model (CAPM)

• A far better method for estimating µ and Q from historical data is to
use a market index Sm as a benchmark.

• Samples

rmk =
Smtk − S

m
tk−1

Smtk−1
of the random market return Rm are computed the same way as for

other assets.

• Likewise, the risk-free returns rfk over the same periods can be obtained.
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The CAPM Model

The aim is to find a model

rik = rfk + βi(r
m
k − r

f
k) + εik

that explains the excess return of the ith asset over the risk-free return as
a sum of two parts:

• βi(rmk − r
f
k) is fully explained by asset i’s correlation with the market,

• εik is independent of the market and due to an unknown level of
idiosyncratic risk σ2

i associated with asset i.

– We interpret εik (k = 1, . . . , T ) as i.i.d. samples of a Gaussian random
variable E i ∼ N(0, σ2

i ).
– This part of the return is also thought of as being independent between

different assets.
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Fitting the Model

• We choose the model that minimizes the sample estimate of the
idiosyncratic risk,

σ2
i = min

βi

1

T − 1

n∑
i=1

(
rik − r

f
k − βi(r

m
k − r

f
k)
)2
,

βi = argmin
βi

1

T − 1

n∑
i=1

(
rik − r

f
k − βi(r

m
k − r

f
k)
)2
.

• Taking derivatives with respect to βi, it is easy to check that

βi =

∑
k(r

i
k − r

f
k)(r

m
k − r

f
k)∑

k(r
m
k − r

f
k)

2
.

• Under the CAPM model, one then stipulates

Ri = rf + βi(Rm − rf) + E i.
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The Estimators

• Therefore,

µi = rf + βi(E[Rm]− rf),

Qij = Cov(rf + βi(R
m − rf) + E i, rf + βj(R

m − rf) + Ej)

= βiβjσ
2(Rm) + δijσiσj,

where δij is the Kronecker delta.

• Replacing E[Rm] and σ2(Rm) by their sample estimators

µ̂m = T−1
∑
k

rmk ,

σ̂2
m =

1

T − 1

∑
k

(rmk − µ̂m)
2
,

we obtain the estimators

µ̂i = rf + βi (µ̂m − rf) ,

Q̂ij = βiβjσ̂
2
m + δijσiσj.
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The Multifactor CAPM Model

• The CAPM model can be generalized by replacing the benchmark index
Sm with multiple indices Sm1, . . . , Smq for which samples

r
mj

k =
S
mj
tk
− Smj

tk−1

S
mj
tk−1

are available.

• The aim is now to find the best-fitting linear model

rik = rfk +

q∑
j=1

βji (r
mj

k − r
f
k) + εik,

in full analogy to the above model.
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Fitting the Multifactor Model

• We again choose the model that minimizes the sample estimate of the
idiosyncratic risk,

σ2
i = min

(β1i ,...,β
q
i )

1

T − 1

n∑
i=1

(
rik − r

f
k −

q∑
j=1

βji (r
mj

k − r
f
k)
)2
,

(β1
i , . . . , β

q
i ) = arg min

(β1i ,...,β
q
i )

1

T − 1

n∑
i=1

(
rik − r

f
k −

q∑
j=1

βji (r
mj

k − r
f
k)
)2
.

• This is a strictly convex quadratic optimization problem when T ≥ q, so
the optimizer (β1

i , . . . , β
q
i ) can be computed by solving the linear system

∇(β1i ,...,β
q
i )

n∑
i=1

(
rik − r

f
k −

q∑
j=1

βji (r
mj

k − r
f
k)
)2

= 0. (1)

9



ISE 347/447 Lecture 12 10

The Estimators

• Let B = (βji ) be the matrix of coefficients obtained when solving (1) for
(i = 1, . . . , n).

• The multifactor CAPM model stipulates that

R = rfe+B(P − rfe) + E ,

where P = [P1 . . . Pq]
> is the unknown random vector of returns

Pj =
S
mj
1 − Smj

0

S
mj
0

of the chosen indices over the investment period [0, 1].
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The Estimators (cont.)

• Therefore,

µ = rfe+B(E[P ]− rfe),

Q = B Cov(P )B> +Diag(σ2
1, . . . , σ

2
n),

where Cov(P ) is the variance-covariance matrix of P .

• Replacing E[P ] and Cov(P ) by their sample estimates yields the CAPM
estimators for µ and Q.
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The Black-Litterman Model

• This is really a method for estimating the vector µ of expected returns.

• The resulting estimates can be used in conjunction with any portfolio
optimization model.

• As before, we assume an investment universe consists of n risky assets
S1, . . . , Sn and one risk-free asset S0 with returns R1, . . . , Rn (random)
and rf (deterministic) respectively over the investment period [0, 1].

• We write R̃ =
[ rf
R

]
, µ̃ =

[ rf
µ

]
and

Q̃ = Cov(R̃) =

(
0 0
0 Q

)
,

where Q = Cov(R).
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Key Assumptions

1. All investors use the investment strategy that maximizes

(M) max
x̃∈Rn+1

π̃>x̃− λx̃>Q̃x̃

s.t.
n∑
i=0

x̃i = 1,

where π̃ =
[
rf
π

]
is an unknown vector of expected returns.

2. λ and Q are known (in reality this means they have already been
estimated via some method of choice).

3. µ is itself modelled as a random vector µ = π + ν, where π is a return
vector implied by the market and ν ∼ N(0, τQ) for some small τ
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Key Assumptions (cont.)

The motivation for Assumption 3 is that if R ∼ N(µ,Q) and R1, . . . , RT

are T independent samples of R, then the sample mean

µ̂ =
1

T

T∑
i=1

Ri

has distribution N(µ, T−1Q).
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Features of the Model

• The key distinguishing feature of the model is to allow investors to specify
their beliefs about the performance of certain portfolios.

• This information is taken into account by updating the a priori estimate
π of µ in a Bayes-like fashion to obtain an improved estimator.

• A key concept is the return implied by the market.

• Let w̃ be the relative weights of the assets in the market capitalization,
i.e.,

w̃i =
ziS

i∑n
i=0 ziS

i
,

where zi is the number of shares of asset i that exist in the market and
Si the value of each share.
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The Return Implied by the Market

• If Assumption 1 holds, w̃ must be the maximizer of (M).

• Otherwise the market would not be at equilibrium and prices would
quickly adjust.

• Mathematically, this implies that w̃ has to satisfy the KKT conditions of
(M),

π̃ − 2λQ̃w̃ − ηe[n+1] = 0 (2)

n∑
i=0

w̃i = 1. (3)

• Here η is an unknown Lagrange multiplier, and e[n+1] is the n + 1-
dimensional vector of ones.
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The Return Implied by the Market (cont.)

• Recalling that by Assumption 2, λ and Q̃ are known, we can solve for π.

• Since

Q̃ = Cov(R̃) =

(
0 0
0 Q

)
,

the first line of (2) reads η = rf .

• Therefore,
π = rfe

[n] + 2λQw.

• Having computed π, we now know the a priori distribution of µ,

µ ∼ N(π, τQ).

• This is the return implied by the market.
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Beliefs About the Market

• Market equilibrium is never quite reached because investors process new
information at different speeds.

• Fund managers who process information faster than others therefore
want the expected returns to reflect their insight or beliefs about where
the market is headed next.

• For example, a manager who believes that the return of asset i is
expected to outperform that of asset j by 2% would want µ to satisfy
the constraint

µi − µj = 0.02.
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Modeling Market Beliefs

• More generally, the fund manager may have several such beliefs
concerning the expected returns of certain portfolios constructed from
the risky assets S1, . . . , Sn, resulting in the constraints

Aµ = b,

where A is a k × n-matrix and b a k-dimensional vector.

• A natural way of incorporating such beliefs into the parameter estimation
problem is to use the conditional expectation

µ̂ = E [µ | Aµ = b]

as the estimator of the expected returns of assets S1, . . . , Sn.
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Conditioning on Beliefs

• The conditional density of µ given Aµ = b is

f(µ | Aµ = b) =
exp{−1

2(µ− π)
>(τQ)−1(µ− π)}∫

{x:Ax=b} exp{−
1
2(x− π)>(τQ)−1(x− π)}dx

• Thus, the conditional distribution D(µ | Aµ = b) is a multivariate
Gaussian centered at µ̂, which is where f(µ | Aµ = b) is maximized.

• Therefore, µ̂ is the minimizer of the convex QP

(P) min
µ

(µ− π)>(τQ)−1(µ− π)

s.t. Aµ = b.
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The Estimators

• Thus, µ̂ is determined by the KKT conditions of problem (P):

(τQ)−1(µ̂− π) = A>η (4)

Aµ̂ = b, (5)

where η is a vector of Lagrange multipliers.

• From (4) we get
µ̂ = π + τQA>η, (6)

and from (5), b = Aµ̂ = Aπ + τAQA>η.

• Hence,
η = (τAQA>)−1(b−Aπ)

and
µ̂ = π +QA>(AQA>)−1(b−Aπ). (7)
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Strength of Beliefs

• In reality, fund managers are never quite certain about their predictions.

• Therefore, we can also add randomness to the belief system Aµ = b by
expressing it as

Aµ = b+ E , (8)

where E ∼ N(0, D) is a multivariate normal with zero mean and diagonal
covariance matrix D = Diag(σ2

1, . . . , σ
2
n).

• In other words, the uncertainties pertaining to different constraints are
considered to be independent.

• The larger the parameter σ2
i , the less certain the investor is about the

belief encoded in the ith row of the system (8).
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Incorporating Uncertain Beliefs

• Beliefs of the form Aµ = b+ E cannot be conditioned upon, as they do
not express an event.

• With some messy algebra, we can show that the generalized posterior
distribution of µ is

D(µ | Aµ = b+ E) = N
(
µ̂, [(τQ)−1 +A>D−1A]−1

)
,

where

µ̂ =
[
(τQ)−1 +A>D−1A

]−1 [
(τQ)−1π +A>D−1b

]
.

is the generalized posterior estimator of µ.

• Note that as uncertainty about the beliefs grows, µ̂ tends to the a priori
estimator π,

lim
D→∞

µ̂ = [(τQ)−1]−1(τQ)−1π = π,

as one would expect.
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