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Reading for This Lecture

o C&T Chapter 8
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Parameter Estimation in Portfolio Optimization

e To use Markovitz portfolio optimization in practice, one has to estimate
the parameters p; and Q;; (¢ =1,...,n) from historical data.

e For recent previous investment periods [t _1,tx] (k= 1,...,T) having
the same length as the current investment period, we can compute the

returns . .
T Q?

i Ttk t;tk-1
T, = .

1
tr—1

e These numbers can be seen as independent samples of the distribution
of Rz
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Method 1: Sample returns and covariances

e A simple approach is to estimate y; as the sample average return of asset
1 over the 1’ previous investment periods,

e The covariance ();; can be estimated similarly as

T

. 1 S

Qij = ﬁZ("ﬁg — 1) (ry, — 1j)-
k=1
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Method 2: Capital Asset Pricing Model (CAPM)

e A far better method for estimating 1 and () from historical data is to
use a market index S™ as a benchmark.

e Samples
™m m

by g1
™m
tp—1
of the random market return R™ are computed the same way as for

other assets.

re =

o Likewise, the risk-free returns 'r£ over the same periods can be obtained.
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The CAPM Model

The aim is to find a model
ri =1l + Bi(rp" —r)) + <}

that explains the excess return of the it" asset over the risk-free return as
a sum of two parts:

o B;(rpt — rg) is fully explained by asset i's correlation with the market,

e ¢! is independent of the market and due to an unknown level of
idiosyncratic risk o? associated with asset 1.

— We interpret ¢} (k=1,...,T) as i.i.d. samples of a Gaussian random
variable £* ~ N(0, 0?).

— This part of the return is also thought of as being independent between
different assets.
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Fitting the Model

e We choose the model that minimizes the sample estimate of the
idiosyncratic risk,

— r%lln 1 Z(rk - r,J; — Bi(ry' — rg))2,

. 1 i m 2
B; = argr%lin ] Z(Tk — 7“,]; — Bi(ry' — 7“,];)) .

e Taking derivatives with respect to [3;, it is easy to check that

ok = ) =)
2 (gt — ,,ai)z

B =

e Under the CAPM model, one then stipulates

R;, = 7§+ Bz(Rm — Tf) —I—gi.
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The Estimators

e [ herefore,
pi =1y + Bi(E[R™] —rp),
Qij — COV(’I“f + ﬁ@(Rm — Tf) -+ 5i,’l“f + Bj(Rm — ’I“f) + 5j)
= BiB;0*(R™) + 6;50405,
where 9;; is the Kronecker delta.

e Replacing E[R™] and o?(R™) by their sample estimators
/jm =7 Z ’I“ZL,
k

Om = (ri" — Hm)”

we obtain the estimators

I :Tf‘FBi(ﬁm_Tf)v
Qij = BiBiGn, + 0ijoio;.
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The Multifactor CAPM Model

e The CAPM model can be generalized by replacing the benchmark index

S™ with multiple indices S™1, ..., 5™ for which samples
m; m;
mj L Stk o Stk_l
T’ = T
tk—1

are available.

e The aim is now to find the best-fitting linear model
rk_rk+zﬁj T— ) + el

in full analogy to the above model.
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Fitting the Multifactor Model

e We again choose the model that minimizes the sample estimate of the
idiosyncratic risk,

. 1 - 7 1 ) m, 2
0} = (Blmlnﬁq> T _1 (7’ —r - E :5%7("%7 _r'“li)) ’
il i—1 j=1
1 n
| g _ (M _
(i,.--,ﬁ)—arg(ﬁgm%q)T_l 1 - E By =)

e This is a strictly convex quadratic optimization problem when 1" > ¢, so
the optimizer (8;,...,3}) can be computed by solving the linear system

n q
Vatsn 2k =l = DBl =) =0, (1)
i=1 j=1
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The Estimators

o Let B = (/) be the matrix of coefficients obtained when solving (1) for
(t=1,...,n).

e The multifactor CAPM model stipulates that

R=rse+ B(P—ryse)+E,

where P = [P, ... P,]" is the unknown random vector of returns
m 4 m 4
b Sl i SO J
J mj
S0

of the chosen indices over the investment period [0, 1].
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The Estimators (cont.)

e [ herefore,

p=rre+ B(E[P] —rye),
Q = BCov(P)B' + Diag(o?,...,02),

n

where Cov(P) is the variance-covariance matrix of P.

e Replacing E[P] and Cov(P) by their sample estimates yields the CAPM
estimators for 11 and (.
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The Black-Litterman Model

e This is really a method for estimating the vector 11 of expected returns.

e The resulting estimates can be used in conjunction with any portfolio
optimization model.

e As before, we assume an investment universe consists of n risky assets
S1, ..., S™ and one risk-free asset S” with returns R',..., R™ (random)
and 7 (deterministic) respectively over the investment period [0, 1].

o Wewrite R=["{], i=["/] and

Q= covii) = 0).

where Q = Cov(R).
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Key Assumptions

1. All investors use the investment strategy that maximizes

(M) max 7'Z— &' Qz
FERn+1

n
s.t. T; = 1,
1=0

where 7 = | "/ | is an unknown vector of expected returns.

2. A and ) are known (in reality this means they have already been
estimated via some method of choice).

3. 1 is itself modelled as a random vector 1 = 7 + v, where 7 is a return
vector implied by the market and v ~ N(0, 7()) for some small 7
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Key Assumptions (cont.)

The motivation for Assumption 3 is that if R ~ N(u, Q) and R,..., RY
are I' independent samples of R, then the sample mean

1 o .
pi=2) R
1=1

has distribution N(u, T71Q).
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Features of the Model

e The key distinguishing feature of the model is to allow investors to specify
their beliefs about the performance of certain portfolios.

e This information is taken into account by updating the a priori estimate
7w of 1 in a Bayes-like fashion to obtain an improved estimator.

e A key concept is the return implied by the market.

o Let w be the relative weights of the assets in the market capitalization,
l.e.,

where z; is the number of shares of asset ¢ that exist in the market and
S* the value of each share.
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The Return Implied by the Market

e If Assumption 1 holds, @ must be the maximizer of (M).

e Otherwise the market would not be at equilibrium and prices would
quickly adjust.

e Mathematically, this implies that w has to satisfy the KKT conditions of
(M),

7 —22Qw — nel" T = (2)

Zw = 1. (3)

e Here n is an unknown Lagrange multiplier, and e!®*1 is the n + 1-
dimensional vector of ones.
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The Return Implied by the Market (cont.)

Recalling that by Assumption 2, A and () are known, we can solve for 7.

Since -
O = Cov(R) = (0 Q) ,
the first line of (2) reads n = ry.

Therefore,
™= ’rfe[”] + 22Qw.

Having computed 7, we now know the a priori distribution of L,

p~ N(m, 7Q).

This is the return implied by the market.



ISE 347/447 Lecture 12 18

Beliefs About the Market

e Market equilibrium is never quite reached because investors process new
information at different speeds.

e Fund managers who process information faster than others therefore
want the expected returns to reflect their insight or beliefs about where
the market is headed next.

e For example, a manager who believes that the return of asset 7 is
expected to outperform that of asset j by 2% would want u to satisfy

the constraint
Hi — U5 — 0.02.



ISE 347/447 Lecture 12 19

Modeling Market Beliefs

e More generally, the fund manager may have several such beliefs
concerning the expected returns of certain portfolios constructed from
the risky assets S, ..., S™, resulting in the constraints

Ap =10,

where A is a k X n-matrix and b a k-dimensional vector.

e A natural way of incorporating such beliefs into the parameter estimation
problem is to use the conditional expectation

p=Ep|Ap="b]

as the estimator of the expected returns of assets S, ..., S™.
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Conditioning on Beliefs

e The conditional density of i given Ay =10 is

exp{—3(u — )T (rQ) " (u — 7))
f{a::Ax:b} eXP{—%(x — ) (7Q) Mz — m) tdx

fp| Ap=1b) =

e Thus, the conditional distribution D(u | Ap = b) is a multivariate
Gaussian centered at 1, which is where f(u | Ap = b) is maximized.

e Therefore, 11 is the minimizer of the convex QP

(P) min(p—m) (7Q)" (n—m)

st. Au=0.
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e Thus, 1 is determined by the KKT conditions of problem (P):

The Estimators

(rQ) N(up—m)=A"n
Afi=b,

where 1) is a vector of Lagrange multipliers.

e From (4) we get

a=m+1QA"n,

and from (5), b= Al = Am + 7AQA 1.

e Hence,

and

n=(TAQA") (b — An)

J=1+QAT(AQAT) L (b — An).
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Strength of Beliefs

e In reality, fund managers are never quite certain about their predictions.

e Therefore, we can also add randomness to the belief system Aup = b by
expressing It as

Ap=>b+¢, (8)
where £ ~ N(0, D) is a multivariate normal with zero mean and diagonal
covariance matrix D = Diag(o%,...,02).

e In other words, the uncertainties pertaining to different constraints are
considered to be independent.

e The larger the parameter 07;2, the less certain the investor is about the

belief encoded in the it" row of the system (8).
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Incorporating Uncertain Beliefs

e Beliefs of the form Au = b+ £ cannot be conditioned upon, as they do
not express an event.

e With some messy algebra, we can show that the generalized posterior
distribution of u is

D(p| Ap=b+&) =N [(rQ) " + A'D7A]),
where
i=[(rQ) ' +ATD Al [(rQ)'r + ATD 1] .

is the generalized posterior estimator of L.

e Note that as uncertainty about the beliefs grows, 1 tends to the a priori

estimator T,
lim fi=[(rQ) Y '(rQ) 'n =,

D— o0

as one would expect.



