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Iterative Methods for Optimization

e As discussed earlier, many optimization techniques are /terative in nature.

e Starting from an initial point, we determine a search direction that will
get us to an improved point.

e At the new point, we repeat until a stopping criteria is satisfied.
e The two crucial elements are

— A measure that can be used to judge improvement.
— A method for generating a new solution in each iteration.

e |deally, we should be able to prove that the method will converge.
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One-dimensional Line Search

e One-dimensional line search is the fundamental subproblem for many
non-linear algorithms.

e Given a function f, a current iterate z, and a direction d, we want to
solve the following problem

min f(x + \d)
st. a< A<D
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Line Search Methods

e Exact Methods

— Solve the line search problem analytically.
— Take the derivative with respect to A and set it to zero.

e lterative Methods

— Methods using function evaluations.
— Methods using derivatives.
— Generally guaranteed to converge for convex functions.



ISE 347/447 Lecture 11

The Interval of Uncertainty

e The interval of uncertainty is the interval within which the optimal
solution has to lie.

e Most derivative-free line search methods are based on iteratively reducing
the interval of uncertainty.

Theorem 1. Let © : R — R be strictly convex over the interval |a, b].
Let \, i € [a,b] be such that \ < p.

— IfO(X\) > O(u), then ©(z) > O(u) forall z € [a,N).
— IfO(\) < O(u), then ©(z) > O(N) for all z € (u,b].
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Derivative-free Line Search

e The previous theorem shows that we can reduce the interval of uncertainty
through function evaluations.

e [ here are a number of line search methods based on this idea.

— Uniform search

— Dichotomous search
— Golden section

— Fibonacci search

e These methods differ essentially in how they choose the points at which
to evaluate the function.
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Newton’s Method

e Newton's Method is a method for finding roots of an equation of the
form f(x) = 0 for a continuously differentiable function f : R — R.

e The idea is very simple.

— Start with an initial guess 2", set k < 0, and repeat the following.

— Set z**1 (the next guess) to be be the unique root of the first-order
approximation of f at z*, which is f(z) =~ f(a%) + f'(2%)(z — %)
and set £ < k£ + 1.

e Solving the above equation, we get that the guess in iteration k is just
oF o — f(ah) ) (@F),

e By iteratively computing a sequence of guesses, we will (hopefully)
converge to a root of the original equation.
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Newton’s Method for Minimization

e Newton's Method can also be used to find a point satisfying first order
optimality conditions for minimization of the function f.

e This is done by applying Newton’'s Method from the previous slide to the
equation f'(z) = 0.

e In this case, we can view the method as using a second-order
approximation to f at z*.

Fla)~ () + £/ ()@ — o)+ o () e - b

e The next iterate is then taken to be the point at which the derivative of
this approximation is zero.

= ['Ok) + (M) (Ak+1 — Ax) =0
= Ak = A = S1)/ (M)

e Again, this is just a Newton step applied to the equation f'(z) = 0.
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Convergence of Newton’s Method

e Newton's method does not always converge.
e There is no measure that is always guaranteed to decrease.
e |f the starting point is “close enough,” then we can show convergence.

e There is a quadratic fit line search method with global convergence.
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Interior Point Methods for Quadratic Programs

e Consider the quadratic program
1

min—z ' Qx + ¢'x

2
s.t. Ar =0

x>0

e Optimality conditions are that there exists a solution to the system

ATy —Qr+s—c
F(z,y,s) = Az — b

STLE

(r,8) >0. (1)

e Again, we can interpret these as primal feasibility, dual feasibility, and

complementary slackness.
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Generalizing Newton’s Method

e If not for the nonnegativity constraints, we could simply solve the system
of equations yielded by the optimality conditions (1).

e The nonnegativity conditions make the situation a bit more complicated.
however.

e To find a solution to the system (1), we can use a variant of Newton's
Algorithm.
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The Basic ldea of Interior Point Methods for QP

e Interior point methods are iterative methods for finding a point satisfying
the optimality conditions (1).

e We start by finding a point (2,1, sY) satisfying PF and DF constraints
and for which 2 > 0, s” > 0.

e Such a point is said to be strictly feasible and we will denote the set of
all strictly feasible points by Fy.

o Next, we try to find a second strictly feasible point (z, 3!, s!) for which
(Sl)T:L'l < (SQ)TQSQ.

e By iterating, we try to converge to a point (z*,y*, s*) satisfying
(s*)'z* = 0.

e This point will then have to be optimal.
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Newton Steps

o Let's assume we have a strictly feasible point (z*,y", s*).

o If we apply Newton's Method to the problem of satisfying the QP
optimality conditions, the Newton step would be determined by solving

Ak T
J(xF y* 5 | AyF | = —F(2",y*, s%). (2)
L ASk -
where _
—Q A" I
JaF gk s =1 A 0 0
Sk 0 XF

and S* = Diag(s*) and X* = Diag(z").
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Newton Steps

e Since (z%,y¥, s¥) is strictly feasible, we can reduce (2) to

J (", ", s")

e In the standard Newton's method, the new iterate would then be

AxF ]

Ayk
AsF

0
0

] — XFkGke ]

(2, ", %) + (Az*, Ay*, As®)

e However, in this case, we need to take into account the nonnegativity

constraints.
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Choosing the Step Size

Choosing the step size is similar to what we do in the simplex method.

Using a test similar to the ratio test, we determine how far we can go
and remain feasible.

In contrast to simplex, here we must remain strictly feasible, however.

We must choose an «o” so that
k4+1  k+1 k41 k k k k k k
(2T T s = (2%, y", %) + ap(Az®, Ay®, AsY)

is strictly feasible.



ISE 347/447 Lecture 11 16

The Central Path

e The central path consists of solutions to the following system
R
Fz",y",s")=1| 0 |,(z",s") >0 (4)
Te

for some ™ > 0.

e The third set of equations is actually equivalent to

e Equation (4) has a unique solution for every 7 as the long as the set of
strictly feasible solutions is nonempty.

e More importantly, the path followed by (z7,y”,s”) converges to an
optimal solution as 7 goes to zero.
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Path-Following Algorithms

e Path-following algorithms try to improve the convergence rate of the
naive approach by generating a sequence of iterates approximating the
central path for decreasing values of 7.

e To do so, we use what are called centered directions, which are Newton
steps for the system

) i Ax — b | 0
F(ZC,y,S): ATy—QZC—FS—C — 0 (5)
] XSe —Te ] | 0

such that ,s > 0.

e A centered direction is then a solution to the system

[ —Q A" I | [ AzF ] | 0 ]
A 0 0 Ayk | = 0 (6)
Sk 0 XF || AsE | Te — XFSFe |
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The Duality Gap

e An important question is then what value of 7 to use in this equation.

po=p(x,s) = =

is called the duality gap.
e |t is a measure of “closeness to optimality”.
e For a point on the central path, u(x,s) = 7.

e We can think of the value of 7 as being chosen in relation to the current
duality gap.
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Reducing the Duality Gap

e Rewriting (6) to emphasize this using a new parameter oy, our direction
can be described as the solution to the equation

—Q A" T | [ Azg] 0 ]
A 0 0 Ayl | = 0 (7)
- SF 0 XF || AsE | oppfe — XFESke |

e |f we choose o, = 0, this corresponds to the original pure Newton step
and is focused purely on decreasing the gap.

e On the other hand, choosing o, = 1 corresponds to moving towards the
central path without decreasing the duality gap.

e |n practice, a balance must be struck between these two strategies.
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Neighborhoods of the Central Path

e Variants of the interior point methods differ in how the step-size
parameter o¥ is chosen.

e In general, the idea is to keep the iterates in a neighborhood of the
central path.

e |deally, we would like iterates to be a good “approximation” to a point
on the central path, i.e., be within a distance ¢ of the central path.

e This is difficult to enforce algorithmically.

e Instead, we can try to ensure that the points lie in certain neighborhoods.
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Common Neighborhoods

Two of the most commonly used neighborhoods are

z's
Na(6) = {2 .5) € Fo | | XSe — pe]| < by, = ")
for 8 € (0,1) (the 2-norm neighborhood) and
x's
Nooo(v) ={(2,y,5) € Fo [ wisi 2 yuVie L. omp=——}

for v € (0,1) (the —oco-norm neighborhood). Note that 6 = 0 and v =1
correspond to the central path itself.
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Short-Step Versus Long-Step Methods

e For typical values of v and 6, the 2-norm neighborhood is usually much
smaller than the —oo-norm neighborhood.

e Requiring iterates to be in the 2-norm neighborhood results in a much
more restrictive algorithm, called a short step algorithm.

e Requiring iterates to be in the —oo-norm neighborhood results in a less
restrictive algorithm.

e The main difference between these two classes of methods is in the
theoretical worst-case performance.
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A Generic Long-Step Method

1. Given v € (0,1) and 0 < omin < Omax < 1, choose (z°,9°, s) €
N_oo(7v). For k=0,1,..., repeat the following steps.

2. Choose 0” € [0min, Omax], let uf = % Solve
—Q A" T [ Az ] 0 ]
A 0 0 Ayt | = 0 .
SE 0 XF || AsE | oppfe — XESke |

3. Choose o such that (z*,y"*, s*) + ai(Ax*, Ay, As®) € N_o(7).

4. Set
(" yF L ) = (1, 4R, 8" 4+ ar(Ax®, AyF, AsY)

and £k =k + 1.
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Starting from an Infeasible Point

e Note that the algorithms we discussed assume that we can find a strictly
feasible point to initialize the algorithm.

e We can modify the basic algorithm to accommodate points that don't
satisfy the equality constraints, as long as we still have ¥ > 0, s > 0.

e As before, we are still trying to solve the system

A i Ax — b ] 0
Flz,y,s)=| Aly—Qx+s—c | = 0
] XSe —rte ] | 0 |

such that x,s > 0.
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Newton Step From an Infeasible Point

e The Newton step is still determined by solving the following system of

linear inequalities:

- Az ] )
J(@® y* s") | AyR | = —F(", 9", s").
e The Newton step is then
@ AT T ][ AzF ] e+ QzF — ATyF — sk ]
A 0 0 Ayt | = b— Axk
Sk0 XF || Ask | I Te — X*Ske ]




