Financial Optimization ISE 347/447

Lecture 11

Dr. Ted Ralphs

Reading for This Lecture

• C&T Chapter 7

Iterative Methods for Optimization

As discussed earlier, many optimization techniques are iterative in nature.

- Starting from an initial point, we determine a search direction that will get us to an improved point.
- At the new point, we repeat until a stopping criteria is satisfied.
- The two crucial elements are
 - A measure that can be used to judge improvement.
 - A method for generating a new solution in each iteration.
- Ideally, we should be able to prove that the method will converge.

One-dimensional Line Search

• One-dimensional line search is the fundamental subproblem for many non-linear algorithms.

ullet Given a function f, a current iterate \hat{x} , and a direction d, we want to solve the following problem

$$\min f(x + \lambda d)$$

s.t. $a \le \lambda \le b$

Line Search Methods

- Exact Methods
 - Solve the line search problem analytically.
 - Take the derivative with respect to λ and set it to zero.
- Iterative Methods
 - Methods using function evaluations.
 - Methods using derivatives.
 - Generally guaranteed to converge for convex functions.

The Interval of Uncertainty

• The *interval of uncertainty* is the interval within which the optimal solution has to lie.

 Most derivative-free line search methods are based on iteratively reducing the interval of uncertainty.

Theorem 1. Let $\Theta : \mathbb{R} \to \mathbb{R}$ be strictly convex over the interval [a, b]. Let $\lambda, \mu \in [a, b]$ be such that $\lambda < \mu$.

- If $\Theta(\lambda) > \Theta(\mu)$, then $\Theta(z) \ge \Theta(\mu)$ for all $z \in [a, \lambda)$.
- If $\Theta(\lambda) \leq \Theta(\mu)$, then $\Theta(z) \geq \Theta(\lambda)$ for all $z \in (\mu, b]$.

Derivative-free Line Search

• The previous theorem shows that we can reduce the interval of uncertainty through function evaluations.

- There are a number of line search methods based on this idea.
 - Uniform search
 - Dichotomous search
 - Golden section
 - Fibonacci search
- These methods differ essentially in how they choose the points at which to evaluate the function.

Newton's Method

• Newton's Method is a method for finding roots of an equation of the form f(x) = 0 for a continuously differentiable function $f: \mathbb{R} \to \mathbb{R}$.

- The idea is very simple.
 - Start with an initial guess x^0 , set $k \leftarrow 0$, and repeat the following.
 - Set x^{k+1} (the next guess) to be the unique root of the first-order approximation of f at x^k , which is $f(x) \approx f(x^k) + f'(x^k)(x x^k)$ and set $k \leftarrow k+1$.
- Solving the above equation, we get that the guess in iteration k is just $x^{k+1} \leftarrow x^k f(x^k)/f'(x^k)$.
- By iteratively computing a sequence of guesses, we will (hopefully) converge to a root of the original equation.

Newton's Method for Minimization

• Newton's Method can also be used to find a point satisfying first order optimality conditions for minimization of the function f.

- This is done by applying Newton's Method from the previous slide to the equation f'(x) = 0.
- In this case, we can view the method as using a second-order approximation to f at x^k .

$$f(x) \approx f(x^k) + f'(x^k)(x - x^k) + \frac{1}{2}f''(x^k)(x - x^k)^2$$

 The next iterate is then taken to be the point at which the derivative of this approximation is zero.

$$\Rightarrow f'(\lambda_k) + f''(\lambda_k)(\lambda_{k+1} - \lambda_k) = 0$$

$$\Rightarrow \lambda_{k+1} = \lambda_k - f'(\lambda_k)/f''(\lambda_k)$$

• Again, this is just a Newton step applied to the equation f'(x) = 0.

Convergence of Newton's Method

- Newton's method does not always converge.
- There is no measure that is always guaranteed to decrease.
- If the starting point is "close enough," then we can show convergence.
- There is a quadratic fit line search method with global convergence.

Interior Point Methods for Quadratic Programs

Consider the quadratic program

$$\min \frac{1}{2}x^{\top}Qx + c^{\top}x$$

s.t. $Ax = b$
 $x \ge 0$

Optimality conditions are that there exists a solution to the system

$$F(x,y,s) = \begin{bmatrix} A^{\top}y - Qx + s - c \\ Ax - b \\ s^{\top}x \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, (x,s) \ge 0.$$
 (1)

 Again, we can interpret these as primal feasibility, dual feasibility, and complementary slackness.

Generalizing Newton's Method

- If not for the nonnegativity constraints, we could simply solve the system of equations yielded by the optimality conditions (1).
- The nonnegativity conditions make the situation a bit more complicated. however.
- To find a solution to the system (1), we can use a variant of Newton's Algorithm.

The Basic Idea of Interior Point Methods for QP

- Interior point methods are iterative methods for finding a point satisfying the optimality conditions (1).
- We start by finding a point (x^0, y^0, s^0) satisfying PF and DF constraints and for which $x^0 > 0$, $s^0 > 0$.
- Such a point is said to be *strictly feasible* and we will denote the set of all strictly feasible points by \mathcal{F}_0 .
- Next, we try to find a second strictly feasible point (x^1, y^1, s^1) for which $(s^1)^\top x^1 < (s^2)^\top x^2$.
- By iterating, we try to converge to a point (x^*, y^*, s^*) satisfying $(s^*)^\top x^* = 0$.
- This point will then have to be optimal.

Newton Steps

- Let's assume we have a strictly feasible point (x^k, y^k, s^k) .
- If we apply Newton's Method to the problem of satisfying the QP optimality conditions, the Newton step would be determined by solving

$$J(x^k, y^k, s^k) \begin{bmatrix} \Delta x^k \\ \Delta y^k \\ \Delta s^k \end{bmatrix} = -F(x^k, y^k, s^k). \tag{2}$$

where

$$J(x^{k}, y^{k}, s^{k}) = \begin{bmatrix} -Q & A^{\top} & I \\ A & 0 & 0 \\ S^{k} & 0 & X^{k} \end{bmatrix}$$

and $S^k = \mathsf{Diag}(s^k)$ and $X^k = \mathsf{Diag}(x^k)$.

Newton Steps

• Since (x^k, y^k, s^k) is strictly feasible, we can reduce (2) to

$$J(x^k, y^k, s^k) \begin{bmatrix} \Delta x^k \\ \Delta y^k \\ \Delta s^k \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ -X^k S^k e \end{bmatrix}$$
(3)

• In the standard Newton's method, the new iterate would then be

$$(x^k, y^k, s^k) + (\Delta x^k, \Delta y^k, \Delta s^k)$$

 However, in this case, we need to take into account the nonnegativity constraints.

Choosing the Step Size

- Choosing the step size is similar to what we do in the simplex method.
- Using a test similar to the ratio test, we determine how far we can go and remain feasible.
- In contrast to simplex, here we must remain strictly feasible, however.
- We must choose an α^k so that

$$(x^{k+1}, y^{k+1}, s^{k+1}) = (x^k, y^k, s^k) + \alpha_k(\Delta x^k, \Delta y^k, \Delta s^k)$$

is strictly feasible.

The Central Path

The central path consists of solutions to the following system

$$F(x^{\tau}, y^{\tau}, s^{\tau}) = \begin{bmatrix} 0 \\ 0 \\ \tau e \end{bmatrix}, (x^{\tau}, s^{\tau}) > 0$$
 (4)

for some $\tau > 0$.

The third set of equations is actually equivalent to

$$x_i^{\tau} s_i^{\tau} = \tau$$

- Equation (4) has a unique solution for every τ as the long as the set of strictly feasible solutions is nonempty.
- More importantly, the path followed by $(x^{\tau}, y^{\tau}, s^{\tau})$ converges to an optimal solution as τ goes to zero.

Path-Following Algorithms

- Path-following algorithms try to improve the convergence rate of the naive approach by generating a sequence of iterates approximating the central path for decreasing values of τ .
- To do so, we use what are called centered directions, which are Newton steps for the system

$$\hat{F}(x,y,s) = \begin{bmatrix} Ax - b \\ A^{\top}y - Qx + s - c \\ XSe - \tau e \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
 (5)

such that $x, s \geq 0$.

• A *centered direction* is then a solution to the system

$$\begin{bmatrix} -Q & A^{\top} & I \\ A & 0 & 0 \\ S^k & 0 & X^k \end{bmatrix} \begin{bmatrix} \Delta x_c^k \\ \Delta y_c^k \\ \Delta s_c^k \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \tau e - X^k S^k e \end{bmatrix}$$
 (6)

The Duality Gap

- ullet An important question is then what value of au to use in this equation.
- The value

$$\mu = \mu(x,s) := \frac{\sum_{i=1}^{n} x_i s_i}{n} = \frac{x^{\top} s}{n}$$

is called the *duality gap*.

- It is a measure of "closeness to optimality".
- For a point on the central path, $\mu(x,s) = \tau$.
- We can think of the value of τ as being chosen in relation to the current duality gap.

Reducing the Duality Gap

• Rewriting (6) to emphasize this using a new parameter σ_k , our direction can be described as the solution to the equation

$$\begin{bmatrix} -Q & A^{\top} & I \\ A & 0 & 0 \\ S^k & 0 & X^k \end{bmatrix} \begin{bmatrix} \Delta x_c^k \\ \Delta y_c^k \\ \Delta s_c^k \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \sigma_k \mu^k e - X^k S^k e \end{bmatrix}$$
(7)

- If we choose $\sigma_k = 0$, this corresponds to the original *pure Newton step* and is focused purely on decreasing the gap.
- On the other hand, choosing $\sigma_k = 1$ corresponds to moving towards the central path without decreasing the duality gap.
- In practice, a balance must be struck between these two strategies.

Neighborhoods of the Central Path

- ullet Variants of the interior point methods differ in how the step-size parameter σ^k is chosen.
- In general, the idea is to keep the iterates in a neighborhood of the central path.
- Ideally, we would like iterates to be a good "approximation" to a point on the central path, i.e., be within a distance ϵ of the central path.
- This is difficult to enforce algorithmically.
- Instead, we can try to ensure that the points lie in certain *neighborhoods*.

Common Neighborhoods

Two of the most commonly used neighborhoods are

$$\mathcal{N}_2(\theta) = \{(x, y, s) \in \mathcal{F}_0 \mid ||XSe - \mu e|| \le \theta \mu, \mu = \frac{x^{\top} s}{n}\}$$

for $\theta \in (0,1)$ (the 2-norm neighborhood) and

$$\mathcal{N}_{-\infty}(\gamma) = \{(x, y, s) \in \mathcal{F}_0 \mid x_i s_i \ge \gamma \mu \ \forall i \in 1, \dots, m, \mu = \frac{x^{\top} s}{n}\}$$

for $\gamma \in (0,1)$ (the $-\infty$ -norm neighborhood). Note that $\theta = 0$ and $\gamma = 1$ correspond to the central path itself.

Short-Step Versus Long-Step Methods

• For typical values of γ and θ , the 2-norm neighborhood is usually much smaller than the $-\infty$ -norm neighborhood.

- Requiring iterates to be in the 2-norm neighborhood results in a much more restrictive algorithm, called a *short step algorithm*.
- Requiring iterates to be in the $-\infty$ -norm neighborhood results in a less restrictive algorithm.
- The main difference between these two classes of methods is in the theoretical worst-case performance.

A Generic Long-Step Method

- 1. Given $\gamma \in (0,1)$ and $0 < \sigma_{\min} < \sigma_{\max} < 1$, choose $(x^0,y^0,s^0) \in \mathcal{N}_{-\infty}(\gamma)$. For $k=0,1,\ldots$, repeat the following steps.
- 2. Choose $\sigma^k \in [\sigma_{\min}, \sigma_{\max}]$, let $\mu^k = \frac{(x^k)^{\top} s^k}{n}$. Solve

$$\begin{bmatrix} -Q & A^{\top} & I \\ A & 0 & 0 \\ S^k & 0 & X^k \end{bmatrix} \begin{bmatrix} \Delta x_c^k \\ \Delta y_c^k \\ \Delta s_c^k \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \sigma_k \mu^k e - X^k S^k e \end{bmatrix}.$$

- 3. Choose α^k such that $(x^k, y^k, s^k) + \alpha_k(\Delta x^k, \Delta y^k, \Delta s^k) \in \mathcal{N}_{-\infty}(\gamma)$.
- 4. Set $(x^{k+1},y^{k+1},s^{k+1})=(x^k,y^k,s^k)+\alpha_k(\Delta x^k,\Delta y^k,\Delta s^k)$ and k=k+1.

Starting from an Infeasible Point

- Note that the algorithms we discussed assume that we can find a strictly feasible point to initialize the algorithm.
- We can modify the basic algorithm to accommodate points that don't satisfy the equality constraints, as long as we still have $x^0 > 0$, $s^0 > 0$.
- As before, we are still trying to solve the system

$$\hat{F}(x,y,s) = \begin{bmatrix} Ax - b \\ A^{\top}y - Qx + s - c \\ XSe - \tau e \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

such that $x, s \geq 0$.

Newton Step From an Infeasible Point

 The Newton step is still determined by solving the following system of linear inequalities:

$$J(x^k, y^k, s^k) \begin{bmatrix} \Delta x^k \\ \Delta y^k \\ \Delta s^k \end{bmatrix} = -\hat{F}(x^k, y^k, s^k).$$

• The Newton step is then

$$\begin{bmatrix} -Q & A^{\top} & I \\ A & 0 & 0 \\ S^k & 0 & X^k \end{bmatrix} \begin{bmatrix} \Delta x_c^k \\ \Delta y_c^k \\ \Delta s_c^k \end{bmatrix} = \begin{bmatrix} c + Qx^k - A^{\top}y^k - s^k \\ b - Ax^k \\ \tau e - X^k S^k e \end{bmatrix}$$