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Reading for This Lecture

• C&T Chapter 7
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Iterative Methods for Optimization

• As discussed earlier, many optimization techniques are iterative in nature.

• Starting from an initial point, we determine a search direction that will
get us to an improved point.

• At the new point, we repeat until a stopping criteria is satisfied.

• The two crucial elements are

– A measure that can be used to judge improvement.
– A method for generating a new solution in each iteration.

• Ideally, we should be able to prove that the method will converge.
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One-dimensional Line Search

• One-dimensional line search is the fundamental subproblem for many
non-linear algorithms.

• Given a function f , a current iterate x̂, and a direction d, we want to
solve the following problem

min f(x+ λd)

s.t. a ≤ λ ≤ b
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Line Search Methods

• Exact Methods

– Solve the line search problem analytically.
– Take the derivative with respect to λ and set it to zero.

• Iterative Methods

– Methods using function evaluations.
– Methods using derivatives.
– Generally guaranteed to converge for convex functions.
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The Interval of Uncertainty

• The interval of uncertainty is the interval within which the optimal
solution has to lie.

• Most derivative-free line search methods are based on iteratively reducing
the interval of uncertainty.

Theorem 1. Let Θ : R→ R be strictly convex over the interval [a, b].
Let λ, µ ∈ [a, b] be such that λ < µ.

– If Θ(λ) > Θ(µ), then Θ(z) ≥ Θ(µ) for all z ∈ [a, λ).
– If Θ(λ) ≤ Θ(µ), then Θ(z) ≥ Θ(λ) for all z ∈ (µ, b].
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Derivative-free Line Search

• The previous theorem shows that we can reduce the interval of uncertainty
through function evaluations.

• There are a number of line search methods based on this idea.

– Uniform search
– Dichotomous search
– Golden section
– Fibonacci search

• These methods differ essentially in how they choose the points at which
to evaluate the function.
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Newton’s Method

• Newton’s Method is a method for finding roots of an equation of the
form f(x) = 0 for a continuously differentiable function f : R→ R.

• The idea is very simple.

– Start with an initial guess x0, set k ← 0, and repeat the following.
– Set xk+1 (the next guess) to be be the unique root of the first-order

approximation of f at xk, which is f(x) ≈ f(xk) + f ′(xk)(x − xk)
and set k ← k + 1.

• Solving the above equation, we get that the guess in iteration k is just
xk+1 ← xk − f(xk)/f ′(xk).

• By iteratively computing a sequence of guesses, we will (hopefully)
converge to a root of the original equation.

7



ISE 347/447 Lecture 11 8

Newton’s Method for Minimization

• Newton’s Method can also be used to find a point satisfying first order
optimality conditions for minimization of the function f .

• This is done by applying Newton’s Method from the previous slide to the
equation f ′(x) = 0.

• In this case, we can view the method as using a second-order
approximation to f at xk.

f(x) ≈ f(xk) + f ′(xk)(x− xk) +
1

2
f ′′(xk)(x− xk)2

• The next iterate is then taken to be the point at which the derivative of
this approximation is zero.

⇒ f ′(λk) + f ′′(λk)(λk+1 − λk) = 0

⇒ λk+1 = λk − f ′(λk)/f ′′(λk)

• Again, this is just a Newton step applied to the equation f ′(x) = 0.
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Convergence of Newton’s Method

• Newton’s method does not always converge.

• There is no measure that is always guaranteed to decrease.

• If the starting point is “close enough,” then we can show convergence.

• There is a quadratic fit line search method with global convergence.
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Interior Point Methods for Quadratic Programs

• Consider the quadratic program

min
1

2
x>Qx+ c>x

s.t. Ax = b

x ≥ 0

• Optimality conditions are that there exists a solution to the system

F (x, y, s) =

 A>y −Qx+ s− c
Ax− b
s>x

 =

 0
0
0

 , (x, s) ≥ 0. (1)

• Again, we can interpret these as primal feasibility, dual feasibility, and
complementary slackness.
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Generalizing Newton’s Method

• If not for the nonnegativity constraints, we could simply solve the system
of equations yielded by the optimality conditions (1).

• The nonnegativity conditions make the situation a bit more complicated.
however.

• To find a solution to the system (1), we can use a variant of Newton’s
Algorithm.
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The Basic Idea of Interior Point Methods for QP

• Interior point methods are iterative methods for finding a point satisfying
the optimality conditions (1).

• We start by finding a point (x0, y0, s0) satisfying PF and DF constraints
and for which x0 > 0, s0 > 0.

• Such a point is said to be strictly feasible and we will denote the set of
all strictly feasible points by F0.

• Next, we try to find a second strictly feasible point (x1, y1, s1) for which
(s1)>x1 < (s2)>x2.

• By iterating, we try to converge to a point (x∗, y∗, s∗) satisfying
(s∗)>x∗ = 0.

• This point will then have to be optimal.
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Newton Steps

• Let’s assume we have a strictly feasible point (xk, yk, sk).

• If we apply Newton’s Method to the problem of satisfying the QP
optimality conditions, the Newton step would be determined by solving

J(xk, yk, sk)

 ∆xk

∆yk

∆sk

 = −F (xk, yk, sk). (2)

where

J(xk, yk, sk) =

 −Q A> I
A 0 0
Sk 0 Xk


and Sk = Diag(sk) and Xk = Diag(xk).
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Newton Steps

• Since (xk, yk, sk) is strictly feasible, we can reduce (2) to

J(xk, yk, sk)

 ∆xk

∆yk

∆sk

 =

 0
0

−XkSke

 (3)

• In the standard Newton’s method, the new iterate would then be

(xk, yk, sk) + (∆xk,∆yk,∆sk)

• However, in this case, we need to take into account the nonnegativity
constraints.
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Choosing the Step Size

• Choosing the step size is similar to what we do in the simplex method.

• Using a test similar to the ratio test, we determine how far we can go
and remain feasible.

• In contrast to simplex, here we must remain strictly feasible, however.

• We must choose an αk so that

(xk+1, yk+1, sk+1) = (xk, yk, sk) + αk(∆x
k,∆yk,∆sk)

is strictly feasible.
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The Central Path

• The central path consists of solutions to the following system

F (xτ , yτ , sτ) =

 0
0
τe

 , (xτ , sτ) > 0 (4)

for some τ > 0.

• The third set of equations is actually equivalent to

xτi s
τ
i = τ

• Equation (4) has a unique solution for every τ as the long as the set of
strictly feasible solutions is nonempty.

• More importantly, the path followed by (xτ , yτ , sτ) converges to an
optimal solution as τ goes to zero.
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Path-Following Algorithms

• Path-following algorithms try to improve the convergence rate of the
naive approach by generating a sequence of iterates approximating the
central path for decreasing values of τ .

• To do so, we use what are called centered directions, which are Newton
steps for the system

F̂ (x, y, s) =

 Ax− b
A>y −Qx+ s− c

XSe− τe

 =

 0
0
0

 (5)

such that x, s ≥ 0.

• A centered direction is then a solution to the system −Q A> I
A 0 0
Sk 0 Xk

 ∆xkc
∆ykc
∆skc

 =

 0
0

τe−XkSke

 (6)
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The Duality Gap

• An important question is then what value of τ to use in this equation.

• The value

µ = µ(x, s) :=

∑n
i=1 xisi
n

=
x>s

n
is called the duality gap.

• It is a measure of “closeness to optimality”.

• For a point on the central path, µ(x, s) = τ .

• We can think of the value of τ as being chosen in relation to the current
duality gap.
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Reducing the Duality Gap

• Rewriting (6) to emphasize this using a new parameter σk, our direction
can be described as the solution to the equation −Q A> I

A 0 0
Sk 0 Xk

 ∆xkc
∆ykc
∆skc

 =

 0
0

σkµ
ke−XkSke

 (7)

• If we choose σk = 0, this corresponds to the original pure Newton step
and is focused purely on decreasing the gap.

• On the other hand, choosing σk = 1 corresponds to moving towards the
central path without decreasing the duality gap.

• In practice, a balance must be struck between these two strategies.
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Neighborhoods of the Central Path

• Variants of the interior point methods differ in how the step-size
parameter σk is chosen.

• In general, the idea is to keep the iterates in a neighborhood of the
central path.

• Ideally, we would like iterates to be a good “approximation” to a point
on the central path, i.e., be within a distance ε of the central path.

• This is difficult to enforce algorithmically.

• Instead, we can try to ensure that the points lie in certain neighborhoods.
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Common Neighborhoods

Two of the most commonly used neighborhoods are

N2(θ) = {(x, y, s) ∈ F0 | ‖XSe− µe‖ ≤ θµ, µ =
x>s

n
}

for θ ∈ (0, 1) (the 2-norm neighborhood) and

N−∞(γ) = {(x, y, s) ∈ F0 | xisi ≥ γµ ∀i ∈ 1, . . . ,m, µ =
x>s

n
}

for γ ∈ (0, 1) (the −∞-norm neighborhood). Note that θ = 0 and γ = 1
correspond to the central path itself.
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Short-Step Versus Long-Step Methods

• For typical values of γ and θ, the 2-norm neighborhood is usually much
smaller than the −∞-norm neighborhood.

• Requiring iterates to be in the 2-norm neighborhood results in a much
more restrictive algorithm, called a short step algorithm.

• Requiring iterates to be in the −∞-norm neighborhood results in a less
restrictive algorithm.

• The main difference between these two classes of methods is in the
theoretical worst-case performance.
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A Generic Long-Step Method

1. Given γ ∈ (0, 1) and 0 < σmin < σmax < 1, choose (x0, y0, s0) ∈
N−∞(γ). For k = 0, 1, . . . , repeat the following steps.

2. Choose σk ∈ [σmin, σmax], let µk = (xk)>sk

n . Solve

 −Q A> I
A 0 0
Sk 0 Xk

 ∆xkc
∆ykc
∆skc

 =

 0
0

σkµ
ke−XkSke

 .

3. Choose αk such that (xk, yk, sk) + αk(∆x
k,∆yk,∆sk) ∈ N−∞(γ).

4. Set
(xk+1, yk+1, sk+1) = (xk, yk, sk) + αk(∆x

k,∆yk,∆sk)

and k = k + 1.
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Starting from an Infeasible Point

• Note that the algorithms we discussed assume that we can find a strictly
feasible point to initialize the algorithm.

• We can modify the basic algorithm to accommodate points that don’t
satisfy the equality constraints, as long as we still have x0 > 0, s0 > 0.

• As before, we are still trying to solve the system

F̂ (x, y, s) =

 Ax− b
A>y −Qx+ s− c

XSe− τe

 =

 0
0
0


such that x, s ≥ 0.
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Newton Step From an Infeasible Point

• The Newton step is still determined by solving the following system of
linear inequalities:

J(xk, yk, sk)

 ∆xk

∆yk

∆sk

 = −F̂ (xk, yk, sk).

• The Newton step is then −Q A> I
A 0 0
Sk 0 Xk

 ∆xkc
∆ykc
∆skc

 =

 c+Qxk −A>yk − sk
b−Axk

τe−XkSke


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