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Reading for This Lecture

• Wolsey, Chapters 10 and 11

• Nemhauser and Wolsey Sections II.3.1, II.3.6, II.3.7, II.5.4

• CCZ Chapter 8

• “Decomposition in Integer Programming,” Ralphs and Galati.

• “Selected Topics in Column Generation,” Lübbecke and Desrosiers
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Review: Setting

We divide the constraints into two set and use the following notation to
refer to various relaxations of the original feasible region.

max c>x

s.t. A′x ≤ b′ (the “nice” constraints)

A′′x ≤ b′′ (the “complicating” constraints)

x ∈ Zn

(MILP-D)

Q′ = {x ∈ Rn | A′x ≤ b′},
Q′′ = {x ∈ Rn | A′′x ≤ b′′},
Q = Q′ ∩Q′′,
S = Q∩ Zn, and

SR = Q′ ∩ Zn.
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Review: The Decomposition Bound

By exploiting our knowledge of conv(SR), we wish to compute the so-called
decomposition bound by partial convexification.

zD = max
x∈conv(SR)

{
c>x | A′′x ≥ b′′

}
zIP ≤ zD ≤ zLP

This can be done using three different basic approaches:

• Dantzig-Wolfe decomposition (dynamic generation of extreme points of
conv(SR))

• Lagrangian relaxation (dynamic generation of extreme points of
conv(SR))

• Cutting plane method (dynamic generation of facets of conv(SR)).

3



ISE 418 Lecture 20 4

Dantzig-Wolfe Decomposition

• In this technique, we utilize the fact that every point in conv(SR) can
be written as the convex combination of extreme points of conv(SR).

• Here is the Dantzig-Wolfe LP:

max c>x

s.t.
∑
s∈E

λss = x

A′′x ≤ b′′∑
s∈E

λs = 1

λ ∈ RE+

(DWLP)

where E is the set of extreme points of conv(SR).

• As we observed previously, if we enforce integrality of x, this is a
reformulation of the IP.

• This is a relaxation of (MILP-D); solving yields an upper bound on zDW .

• Typically, x is not explicitly present in the formulation.
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Dantzig-Wolfe LP

We can rewrite the Dantzig-Wolfe LP in the following two forms

max c>

(∑
s∈E

sλs

)

s.t. A′′

(∑
s∈E

sλs

)
≤ b′′∑

s∈E

λs = 1

λ ∈ RE+

max
∑
s∈E

(c>s)λs

s.t.
∑
s∈E

(A′′s)λs≤ b′′∑
s∈E

λs = 1

λ ∈ RE+
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Solving the Dantzig-Wolfe LP

• We solve this Dantzig-Wolfe LP (often called the master problem) using
column generation.

• We begin with a restricted set of columns generated heuristically.

– Start with a subset of “promising” columns.
– Solve the restricted master problem (RMP) with just these columns.
– Price the remaining columns and add those with positive reduced

costs.
– Iterate.
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The Dantzig-Wolfe Subproblem

• In Dantzig-Wolfe, we have a column for each member of E .

• For s ∈ E , if we take

cs = c>s

As = A′′s,

then the reduced cost of the column associated with s is

cs − (uAs + α) = c>s− u(A′′s)− α = (c> − uA′′)s− α,

where α is the dual multiplier on the convexity constraint and u is a
vector of dual multipliers associated with the other constraints.

• Since α is a constant with respect to this subproblem, the column
generation subproblem is

LR(u) : zLR(u) = −α+ max
x∈SR

{(c− uA′′)x},

which is equivalent to the Lagrangian relaxation!
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Geometry of Dantzig-Wolfe Decomposition

DW utilizes an inner approximation of conv(SR)

• Master:
zDW = maxλ∈RE+

{
c>
(∑

s∈E sλs
) ∣∣ A′′ (∑s∈E sλs

)
≤ b′′,

∑
s∈E λs = 1

}
• Subproblem: LR(c> − uA′′)
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Block Structure and Dantzig-Wolfe

• When the problem has block structure, the single subproblem may
decompose into independent blocks.

• In this case, we can use a separate convexity constraint for each block.

• There are many common cases in which the blocks are identical (e.g.,
VRP with homogeneous fleet).

– In such a case, the separate convexity constraint can be aggregated
and the relaxation effectively collapses to a single block.

– We end up with a convexity constraints, but with right-hand side K,
where K is the number of blocks.

– Note that in this case, the original model exhibits symmetry that
makes standard solution method ineffective.

– Dantzig-Wolfe decomposition is one way of combatting this.
– In a future lecture, we will discuss other methods of handling symmetry

in MILPs.
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Example: The Generalized Assignment Problem

• The problem is to assign m tasks to n machines subject to capacity
constraints.

• An IP formulation of this problem is

max

m∑
i=1

n∑
j=1

pjixij

s.t.

n∑
j=1

xij = 1, i = 1, . . . ,m,

m∑
i=1

wijxij ≤ dj, j = 1, . . . , n,

xij ∈ {0, 1}, i = 1, . . . ,m, j = 1, . . . , n,

• The variable xij is one if task i is assigned to machine j.

• The “profit” associated with assigning task i to machine j is pij.
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Applying Dantzig-Wolfe to the GAP

• Let’s naively apply Dantzig-Wolfe to the GAP.

• Note that if we relax the constraint that each item be assigned to a
different machine, the problem decomposes by machine.

• This allows us to use a separate convexity constraint for each machine.

• Then the Dantzig-Wolfe LP is

max

n∑
j=1

∑
s∈Ej

λjs

[
m∑
i=1

pjisi

]

s.t.

n∑
j=1

∑
s∈Ej

λjssi = 1, i = 1, . . . ,m,

∑
s∈Ej

λjs = 1, j = 1, . . . , n,

λj ∈ REj+ , j = 1, . . . , n,

where Ej is the set of extreme points for the knapsack polytope associated
with machine j.
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Applying Dantzig-Wolfe to the GAP (cont.)

• In the previous slide, the columns are subsets of the tasks that can be
assigned to one particular machines (called assignments).

• For assignment s ∈ Ej, si = 1 if task i is assigned to machine j.

• The relaxation problem itself decomposes into a set of independent
knapsack problems.

• Note that one feasible assignment is to assign no tasks, which would
correspond to a column of all zeros.

• Therefore, we could also write the convexity constraints as inequalities.

• Finding an initial feasible set of columns is trivial.

• Note that the master problem is a relaxation of a set partitioning problem.
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Aggregating

• Now consider the case when

– p = pi1 = pi2 = · · · = pin for all i = 1, . . .m and
– w = wi1 = wi2 = · · · = win for all i = 1, . . .m.

• In this case, we have that E = E1 = E2 = · · · = Ej for all i, j ∈ 1, dots, n.

• Then we can aggregate as follows.

max
∑
s∈E

λs
[
p>s

]
s.t.

n∑
i=1

∑
s∈E

λssi = 1, i = 1, . . . ,m,∑
s∈E

λs =K, j = 1, . . . , n,

λ ∈ RE+
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Review: Lagrangian Relaxation

• We continue with the same setup.

max c>x

s.t. A′x ≤ b′ (the “nice” constraints)

A′′x ≤ b′′ (the “complicating” constraints)

x ∈ Zn

(MILP-D)

where optimizing over SR = {x ∈ Zn | A′x ≤ b′} is “easy.”

• Lagrangian Relaxation (for u ≥ 0):

LR(u) : zLR(u) = ub′′ + max
x∈SR

{(c> − uA′′)x}.
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The Lagrangian Dual

• The next step is to obtain a dual problem formed by allowing u to vary.

• We are looking for the value of u ≥ 0 that yield the lowest upper bound.

• The Lagrangian dual problem, LD, is

zLD = min
u≥0

zLR(u)

• The Lagrangian dual can be rewritten as the following LP

zLD = min
η,u
{α+ ub′′ | α ≥ (c> − uA′′)s, s ∈ E , u ≥ 0}

• This is exactly the LP dual of (DWLP)!

• Solving it using a cutting plane algorithm is equivalent to solving (DWLP)
by column generation.

• The separation problem is again LR(u)!
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Solving the Lagrangian Dual with Subgradient
Optimization

• Note that (c> − uA′′)>x is an affine function of u for a fixed x.

• This tells us that zLR(u), when viewed as a function of u, is the maximum
of a finite number of affine functions.

• Hence, it is piecewise linear and convex on the domain over which it is
finite.

• We can easily minimize any convex function which we can evaluate and
subdifferentiate using a technique called subgradient optimization.

• This is just a variant of gradient descent

• In each iteration, we move in the direction of the negative gradient,
which is just the degree of violation of each constraint.

• There are a wide range of implementations of this basic idea.
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Textbook Subgradient Algorithm

• The idea of the subgradient algorithm is to first fix u and determine x
by optimizing over SR.

• Then update u according to the observed violations.

• Here is a basic subgradient algorithm for solving the Lagrangian dual:

1. Choose initial Lagrange multipliers u0 ≥ 0 and set t = 0.
2. Solve the Lagrangian subproblem LR(ut) to obtain xt.
3. Calculate the current violation of the complicating constraints γt =
b′′ −A′′xt.

4. Set ut+1
j ← max{utj − θtγt, 0} where θt is the chosen step size.

5. Set t← t+ 1 and go to step 2.

• This algorithm is guaranteed to converge to the optimal solution as long
as {θt}∞t=0 → 0 and

∑∞
t=0 θ

t =∞, e.g., harmonic series.

• In practice, one usually uses a geometric progression for the step sizes.

• Sometimes, it’s difficult to know when the optimal solution has been
reached.
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Performing the Updates

• Suppose we have an estimate L̄ of the optimal value.

• We can choose ut+1 such that the Lagrangian objective of xt is L̄.

• Since we have that ut+1 = ut − θkγt (in the equality constrained case),
then this means

ut+1b′′ + (c> − ut+1A′′)xt = c>xt + ut+1γt

= c>xt + [ut − θtγt]γt

= L̄

• Finally, solving and putting it all together, we obtain

θt =
L(ut)− L̄
‖γt‖2
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Performing the Updates (cont.)

• Since we do not usually know a good value for the new target, we can
instead use the value L of the best known solution.

• We also scale by a small factor that we reduce as the algorithm progresses.

• We then finally have

θt =
αt[L(ut)− L]

‖γt‖2

• Here αt is an additional factor used to reduce the step size over time.

• Typically, we start with α0 = 2 and reduce αt by half when the Lagrangian
objective does not improve for a specified number of iterations.
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Example: Knapsack Problem

• We consider a binary knapsack problem maxx∈Bn{c>x | a>x ≤ b} for
a, c ∈ Zn+ and b ∈ Z+.

• If we relax the knapsack constraint, we have only bound constraints left.

• The relaxation can be solved by setting variables with positive coefficient
to upper bounds and variables with negative coefficients to lower bound.

• Thus,

LR(u) =

n∑
i=1

max{0, ci − uai}+ ub (1)

• Note that the feasible region in this case has all integral extreme points,
so zLD = zLP .
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Example: Knapsack Problem (cont.)

• Let us assume from here on that the variables are arranged in non-
increasing order by the ratio ci/ai.

• Under this assumption, we can rewrite (1) equivalently as:

LR(u) =

n∑
i=j

ci + u(b−
n∑
i=j

ai) (2)

where j = argmin{i | ci − uai ≥ 0} = argmin{i | ci/ai ≥ u}.

• We know LR(u) will be minimized when it has a zero subgradient, which
will occur for u = ck/ak, where

∑n
i=k ai ≤ b ≤

∑n
i=k−1 ai.

• Note that this optimal solution is exactly the same as the optimal dual
solution to the LP relaxation, derived from LP duality.
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Example: Knapsack Problem (cont.)

• Let us now consider an instance with n = 3 described by the data
a = [3 1 4], c = [10 4 14], and b = 4.

• Since the cost vector c is non-negative, the first solution will be to choose
all items, i.e., set all variables to value 1.

• We take the step sizes to be a simple geometric sequence.

• Then we have u1 = u0 − θ0γ0 =
∑n
i=1 ai − b.

• Here is the sequence of iterates:

t xt γt ut θt
0 [1 1 1] −4 0 1
1 [0 1 0] 3 4 1

2
2 [1 1 1] −4 5

2
1
4

3 [0 1 1] −1 7
2

1
8

4 [0 1 0] 3 29
8

1
16

5 [0 1 1] −1 55
16

1
32

6 [0 1 1] −1 111
32

1
64

• The same solution is now repeated and the sequence will converge to the
optimal value of 7/2.
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Example: Knapsack Problem (cont.)

• Note that the optimal solution was reached in the fourth iteration on the
previous slide, but this was prior to convergence.

• The sequence above is not unique because there is an alternative optimal
solution to the Lagrangian subproblem in iteration 3.

• Here is an alternative sequence:

t xt γt ut θt
0 [1 1 1] −4 0 1
1 [0 1 0] 3 4 1

2
2 [1 1 1] −4 5

2
1
4

3 [1 1 1] −4 7
2

1
8

4 [0 1 0] 3 4 1
16

5 [0 1 0] 3 61
16

1
32

6 [0 1 0] 3 119
32

1
64

• This sequence will converge to 29/8 = 3.625 rather than to the optimum.

• This is because our sequence of step sizes goes to zero too quickly.

• If we use a harmonic series, we should get conergence (modulo possible
numerical issues related to round-off, etc.).

25



ISE 418 Lecture 20 26

Geometry of the Lagrangian Dual

LD iteratively produces single extreme points of conv(SR) and uses the
violation of the relaxed constraints to adjust the dual solution.

• Master: zLD = min
u∈Rm′′+

{
maxs∈E

{
c>s+ u>(b′′ −A′′s)

}}
• Subproblem: LR(c> − uA′′)
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The Cutting Plane Method as a Decomposition Method

• Finally, it is possible to exploit our ability to optimize over SR in a more
traditional cutting plane method.

• Recall the algorithm for separating using an optimization oracle from
Lecture 12.

• We can use this algorithm as a means of separating (possibly infeasible)
solutions from SR in the context of a cutting plane method.
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Lagrange Cuts

• Boyd observed that for u ∈ Rm+ , a Lagrange cut of the form

(c− uA′′)>x ≤ LR(u)− ub′′ (LC)

is valid for P.

• If we take u∗ to be the optimal solution to the Lagrangian dual, then
this inequality reduces to

(c− u∗A′′)>x ≤ zD − ub′′ (OLC)

• If we now take

xD ∈ argmax
{
c>x | A′′x ≤ b′′, (c− u∗A′′)>x ≥ zD − ub′′

}
,

then we have c>xD = zD.

• Such cuts can be generated using an optimization-based oracle.
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Geometry of the Cutting Plane Method
CPM utilizes an optimization-based oracle to separate from conv(SR)

• Master:
zCP = maxx∈Rn+

{
c>x | A′′x ≤ b′′, (αk)>x ≤ βk, 1 ≤ k ≤ L

}
• Subproblem: OPT (SR)
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Comparing the Methods

• Recall that the Lagrangian dual can be rewritten as the following LP

zLD = min
η,u
{η + ub′′ | η ≥ (c> − uA′′)s, s ∈ E , u ≥ 0}

• It is easy to show that this LP is the dual of the Dantzig-Wolfe LP.

• Thus, both these method produce the same bound (in principle).

zD = zLD = zDW

• The cutting plane method just described is yet another method for
computing the same bound.

• In practice, there are great differences between these three methods,
both algorithmically and numerically.

– Conceptually, the Lagrangian dual produces only a dual solution and
does not include any explicit primal solution information.

– The Dantzig-Wolfe LP produces a primal solution, which can be used
to perform generate valid inequalities and tighten the relaxation.

• Naive implementations are slow to converge and numerical difficulties
may prevent the calculation of an exact bound.
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Choosing a Decomposition

• Typically, there are multiple choices for decomposing a give IP.

• The definition of the set SR determines the strength of the bound.

• However, it is important to choose a relaxation that can be solved
relatively easily (but not too easily).

• The relaxation must be solved iteratively in order to solve the Lagrangian
dual.

• Recall the TSP example.

• Other Examples

– Flow Problem with Budget Constraints
– Facility Location Problem
– Generalized Assignment Problem
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Comparing Decomposition-based Bounding to LP-based
Bounding

• The class of methods we have just discussed are called decomposition-
based methods because they decompose the problem into two parts.

• Up until the mid-1970’s, these methods were very popular for solving
integer programming problems.

• They can effectively strengthen the bound obtained by LP relaxation
alone.

• However, after methods based on strengthening the LP relaxation using
valid inequalities were introduced, they fell out of favor.

• It is possible to combine these two approaches.

• This is one of the current frontiers of research in integer programming.
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