Reading for This Lecture

- Nemhauser and Wolsey Sections II.1.1-II.1.3, II.1.6
- Wolsey Chapter 8
- CCZ Chapter 3, Section 7.5
Describing $\text{conv}(\mathcal{S})$

- We have seen that, in theory, $\text{conv}(\mathcal{S})$ has a finite description.
- If we “simply” construct that description, we could turn our MILP into an LP.
- So why aren’t IPs easy to solve?
 - The size of the description is generally HUGE!
 - The number of facets of the TSP polytope for an instance with 120 nodes is more than 10^{100} times the number of atoms in the universe.
 - It is physically impossible to write down a description of this polytope.
 - Not only that, but it is very difficult in general to generate these facets (this problem is not polynomially solvable in general).
For Example

• For a TSP of size 15
 – The number of subtour elimination constraints is 16,368.
 – The number of *comb inequalities* is 1,993,711,339,620.
 – These are only two of the known classes of facets for the TSP.

• For a TSP of size 120
 – The number of subtour elimination constraints is 0.6×10^{36}!
 – The number of comb inequalities is approximately 2×10^{179}!
Valid Inequalities Revisited

- Recall that the inequality denoted by (π, π_0) is valid for a polyhedron \mathcal{P} if $\pi x \leq \pi_0 \ \forall x \in \mathcal{P}$.

- Note that an inequality (π, π_0) is valid if and only if
 \[\pi_0 \geq \max_{x \in \mathcal{P}} \pi^\top x \]

- Alternatively, an inequality (π, π_0) is valid if
 \[\pi_0 \geq F(b), \]
 where F is a dual function with respect to the optimization problem
 \[\max_{x \in \mathcal{P}} \pi^\top x \]

- In fact, many classes of valid inequalities used in solvers are generated in this way.

- Thus, there is an inextricable link between valid inequalities and optimization.
Cutting Planes

- The term *cutting plane* usually refers to an inequality valid for $\text{conv}(S)$, but which is violated by the solution to the (current) LP relaxation.

- Cutting plane methods attempt to improve the bound produced by the LP relaxation by iteratively adding cutting planes to the initial LP relaxation.

- Taken to its limit, this is an algorithm for solving MILPs that fits into the general “dual improvement” framework.

- Adding such inequalities to the LP relaxation *may* improve the bound (this is not a guarantee).
The Separation Problem

• Formally, the problem of generating a cutting plane can be stated as follows.

 Separation Problem: Given a polyhedron \(Q \subseteq \mathbb{R}^n \) and \(x^* \in \mathbb{R}^n \), determine whether \(x^* \in Q \) and if not, determine \((\pi, \pi_0)\), an inequality valid for \(Q \) such that \(\pi x^* > \pi_0 \).

• This problem is stated here independent of any solution algorithm.

• However, it is typically used as a subroutine inside an iterative method for improving the LP relaxation.

• In such a case, \(x^* \) is the solution to the LP relaxation (of the current formulation, including previously generated cuts).

• We will see that the difficulty of solving this problem exactly is strongly tied to the difficulty of the optimization problem itself.

• Any algorithm for solving the separation problem can be immediately leveraged to produce an algorithm for solving the optimization problem.

• This algorithm is know as the *cutting plane algorithm*.
Generic Cutting Plane Method

Let $\mathcal{P} = \{x \in \mathbb{R}^n \mid Ax \leq b\}$ be the initial formulation for

$$\max\{c^\top x \mid x \in S\},$$ \hspace{1cm} (MILP)

where $S = \mathcal{P} \cap \mathbb{Z}_+^r \times \mathbb{R}_+^{n-p}$, as defined previously.

Cutting Plane Method

\begin{align*}
P_0 & \leftarrow \mathcal{P}, \\
k & \leftarrow 0 \\
\textbf{while} \ TRUE \ \textbf{do} \\
& \quad \text{Solve the LP relaxation } \max\{c^\top x \mid x \in \mathcal{P}_k\} \text{ to obtain a solution } x^k \\
& \quad \text{Solve the problem of separating } x^k \text{ from } \text{conv}(S) \\
& \quad \textbf{if} \ x^k \in \text{conv}(S) \ \textbf{then} \\
& \quad \quad \text{STOP} \\
& \quad \textbf{else} \\
& \quad \quad \text{Determine an inequality } (\pi^k, \pi^0_k) \text{ valid for } \text{conv}(S) \text{ but for which } \\
& \quad \quad \quad \pi^\top x^k > \pi^0_k. \\
& \quad \textbf{end if} \\
& \quad P_{k+1} \leftarrow P_k \cap \{x \in \mathbb{R}^n \mid (\pi^k)^\top x \leq \pi^0_k\}. \\
& \quad k \leftarrow k + 1 \\
\textbf{end while}
\end{align*}
Questions to be Answered

- How do we solve the separation problem in practice?
- Will this algorithm terminate?
- If it does terminate, are we guaranteed to obtain an optimal solution?
The Separation Problem as an Optimization Problem

Separation Problem: Given a polyhedron $Q \subseteq \mathbb{R}^n$ and $x^* \in \mathbb{R}^n$, determine whether $x^* \in Q$ and if not, determine (π, π_0), a valid inequality for Q such that $\pi x^* > \pi_0$.

- Closer examination of the separation problem for a polyhedron reveals that it is in fact an optimization problem.
- Consider a polyhedron $Q \subseteq \mathbb{R}^n$ and $x^* \in \mathbb{R}^n$.
- The separation problem can be formulated as

$$
\max \{ \pi x^* - \pi_0 \mid \pi^\top x \leq \pi_0 \ \forall x \in \mathcal{P}, (\pi, \pi_0) \in \mathbb{R}^{n+1} \} \quad (\text{SEP})
$$

along with some normalization to prevent (SEP) being unbounded.
- When Q is a polytope, we can reformulate this problem as the LP

$$
\max \{ \pi x^* - \pi_0 \mid \pi^\top x \leq \pi_0 \ \forall x \in \mathcal{E} \},
$$

where \mathcal{E} is the set of extreme points of Q.
- When Q is not bounded, the reformulation must account for the extreme rays of Q.
The Normalization

• There are multiple ways to normalize, e.g.,
 – \(\pi_0 = 1 \) or
 – \(\| \pi \| = 1 \).

• These are equivalent with respect to reducing the separation problem to an optimization problem

• Different normalizations will, however, result in different optimal solutions and will behave differently in a computational setting.

• The issue of how to normalize will come up again in later lectures.
The 1-Polar

- Suppose we normalize (SEP) by taking $\pi_0 = 1$.
- Assuming w.l.o.g. that 0 is in the interior of Q, the set of all inequalities valid for Q is then given by
 \[Q^* = \{ \pi \in \mathbb{R}^n \mid \pi^T x \leq 1 \ \forall x \in Q \} \]
 and is called its 1-Polar.
- If $Q \subseteq \mathbb{R}^n$ is a polyhedron containing the origin, then
 1. Q^* is a polyhedron;
 2. $Q^{**} = Q$;
 3. $x \in Q$ if and only if $\pi^T x \leq 1 \ \forall \pi \in Q^*$;
 4. If E and R are the extreme points and extreme rays of Q, respectively, then
 \[Q^* = \{ \pi \in \mathbb{R}^n \mid \pi^T x \leq 1 \ \forall x \in E, \pi^T r \leq 0 \ \forall r \in R \} \].
- A converse of the last result also holds.
 - If the polar is described by a finite set of points and rays, then these constitute generators for the polyhedron.
 - However, these sets need not be minimal.
Interpreting the Polar

• The polar is the set of all valid inequalities, but without some normalization, it contains all scalar multiples of each inequality.

• The 1-Polar of a polyhedron is the set of all valid inequalities as long as 0 is in the interior.

• The 1-Polar has a built-in normalization.

• There is a one-to-one correspondence between the facets of the polyhedron and the extreme points of the 1-Polar when
 – the polyhedron is full-dimensional and
 – the origin is in its interior,

• Hence, the separation problem can be seen as an optimization problem over the polar.
The Membership Problem

Membership Problem: Given a polyhedron $Q \subseteq \mathbb{R}^n$ and $x^* \in \mathbb{R}^n$, determine whether $x^* \in Q$.

- The membership problem is a decision problem and is closely related to the separation problem.
- In fact, the dual of (SEP) is a formulation for the membership problem:
 \[
 \min_{\lambda \in \mathbb{R}^E_+} \left\{ 0^\top \lambda \mid E\lambda = x^*, 1^\top \lambda = 1 \right\}, \tag{MEM}
 \]
 where E is a matrix whose columns are the extreme points of Q.
- In other words, we try to express x^* as a convex combination of extreme points of Q.
- When this LP is infeasible, the certificate is a separating hyperplane.
- We can solve this LP by column generation.
- In each iteration, a new column is “generated” by optimizing over Q.
- We can picture this algorithm in the “primal space” to understand what it’s doing.
Example: Separation Algorithm with Optimization Oracle

Figure 1: Polyhedron and point to be separated
Example: Separation Algorithm with Optimization Oracle

Figure 2: Iteration 1
Example: Separation Algorithm with Optimization Oracle

Figure 3: Iteration 2
Example: Separation Algorithm with Optimization Oracle

Figure 4: Iteration 3
Example: Separation Algorithm with Optimization Oracle

Figure 5: Iteration 4
Example: Separation Algorithm with Optimization Oracle

Figure 6: Iteration 5
The Separation Problem for the 1-Polar

- The column generation algorithm for solving (MEM) can be interpreted as a cutting plane algorithm for solving (SEP).
- The separation problem (SEP) for Q has one inequality for each extreme point of Q.
- We can generate these inequalities using a cutting plane algorithm.
- This is a bit circular...this requires solving the separation problem for Q^*, the 1-Polar.
- For a given $\pi^* \in \mathbb{R}^n$, the separation problem for Q^* is to determine whether $\pi^* \in Q^*$ and if not, determine $x \in E$ such that $\pi^*x < 1$.
- In other words, we are asking whether π^* is a valid inequality for Q.
- As before, this problem can be formulated as

$$\max\{\pi^*x \mid x \in Q\},$$

which is an optimization problem over Q!
Formal Equivalence of Separation and Optimization

Separation Problem: Given a polyhedron $Q \subseteq \mathbb{R}^n$ and $x^* \in \mathbb{R}^n$, determine whether $x^* \in P$ and if not, determine (π, π_0), a valid inequality for Q such that $\pi x^* > \pi_0$.

Optimization Problem: Given a polyhedron Q, and a cost vector $c \in \mathbb{R}^n$, determine x^* such that $cx^* = \max\{cx : x \in Q\}$.

Theorem 1. For a family of rational polyhedra $Q(n, T)$ whose input length is polynomial in n and $\log T$, there is a polynomial-time reduction of the linear programming problem over the family to the separation problem over the family. Conversely, there is a polynomial-time reduction of the separation problem to the linear programming problem.

- The parameter n represents the dimension of the space.
- The parameter T represents the largest numerator or denominator of any coordinate of an extreme point of Q (the vertex complexity).
- The ellipsoid algorithm provides the reduction of linear programming separation to separation.
- Polarity provides the other direction.
Proof: The Ellipsoid Algorithm

- The ellipsoid algorithm is an algorithm for solving linear programs.
- The implementation requires a subroutine for solving the separation problem over the feasible region (see next slide).
- We will not go through the details of the ellipsoid algorithm.
- However, its existence is very important to our study of integer programming.
- Each step of the ellipsoid algorithm, except that of finding a violated inequality, is polynomial in
 - n, the dimension of the space,
 - $\log T$, where T is the largest numerator or denominator of any coordinate of an extreme point of Q, and
 - $\log \|c\|$, where $c \in \mathbb{R}^n$ is the given cost vector.
- The entire algorithm is polynomial if and only if the separation problem is polynomial.
Classes of Inequalities

- As we have just shown, producing general facets of \(\text{conv}(S) \) is as hard as optimizing over \(S \).
- Thus, the approach often taken is to solve a “relaxation” of the separation problem.
- This “relaxation” is usually obtained in one of several ways.
 - It can be obtained in the usual way by relaxing some constraints to obtain a more tractable problem.
 - The “structure” of the inequalities may be somehow restricted to make the right-hand side easy to compute.
 - We may also use a dual function to compute the right-hand side rather than computing the “optimal” right-hand side.
- We will see examples of the second approach in later lectures.
- In either of the first two cases, the class of inequalities we want to generate typically defines a polyhedron \(C \).
- \(C \) is what we earlier called the closure.
- The separation problem for the class is the separation problem over the closure.