Integer Programming
ISE 418

Lecture 1

Dr. Ted Ralphs
Reading for This Lecture

- N&W Sections I.1.1-I.1.4
- Wolsey Chapter 1
- CCZ Chapters 1-2
What is mathematical optimization?
Mathematical Optimization

- *Mathematical optimization* is a formal language for describing and analyzing (optimization) problems.

- The essential elements of an optimization problem are
 - a system whose operating state can be specified numerically by specifying the values of certain *variables*;
 - a set of states considered *feasible* for the given system that are contained in a set we can describe; and
 - an *objective function* that defines a preference ordering of the states.

- Before applying mathematical optimization techniques, we must first create a *model*, which is then translated into a particular *formulation*.

- The formulation is a formal description of the problem in terms of mathematical functions and logical operators.

- The use of mathematical optimization as a language imposes constraints on how the system can be modeled.

- We often need to make simplifying assumptions and approximations in order to put the problem into the required form.

- Nevertheless, mathematical optimization is a very general language.
Modeling

• Our overall goal is to develop a model of a real-world system in order to analyze the system.

• The system we are modeling is typically (but not always) one we are seeking to control by determining its “operating state.”

• The (independent) variables in our model represent aspects of the system we have control over.

• The values that these variables take in the model tell us how to set the operating state of the system in the real world.

• Modeling is the process of creating a conceptual model of the real-world system.

• Formulation is the process of constructing a mathematical optimization problem whose solution reveals the optimal state according to the model.

• This is far from an exact science.
The Problem Solving Process

• The process solving the original problem consists generally of the following steps.
 – **Model**: Determine the “real-world” state variables, system constraints, and goal(s) or objective(s) for operating the system.
 – **Formulate**: Translate these variables and constraints into the form of a mathematical optimization problem (the “formulation”).
 – **Solve**: Solve the mathematical optimization problem.
 – **Interpret**: Interpret the solution in terms of the real-world system.

• This process presents many challenges.
 – Simplifications may be required in order to ensure the eventual mathematical optimization problem is “tractable.”
 – The mappings from the real-world system to the model and back are sometimes not very obvious.
 – Variables that don’t appear in the conceptual model may be needed to enforce logical conditions or simplify the form of the constraints.
 – There may be more than one valid “formulation.”

• All in all, an intimate knowledge of mathematical optimization definitely helps during the modeling process.
Example: Sudoku

Challenge: Fill in the grid squares with numbers 0-9 such that

- All squares in the same column have different values, and
- All squares in the same row have different values.

- What should the decision variable be?
- What are the constraints?
Mathematical Optimization Problems

Elements of the model:

- Decision variables: a vector of variables indexed 1 to n.
- Constraints: pairs of functions and right-hand sides indexed 1 to m.
- Objective Function
- Parameters and Data

The general form of a mathematical optimization problem is:

$$z_{\text{MP}} = \sup \ f(x)$$

s.t. \quad g_i(x) \leq b_i, \quad 1 \leq i \leq m \tag{MP}$$

$$x \in \mathbb{Z}^p \times \mathbb{R}^{n-p}$$

Note the use supremum here because the maximum may not exist.
Feasible Region

- The **feasible region** of (MP) is

 \[F = \{ x \in \mathbb{Z}^p \times \mathbb{R}^{n-p} \mid g_i(x) \leq b_i, \ 1 \leq i \leq m \} \]

- The feasible region is **bounded** when

 \[F \subseteq \{ x \in \mathbb{R}^m \mid \|x\|_1 \leq M \} \]

 and **unbounded** otherwise.

- We take \(z_{MP} = -\infty \) when \(F = \emptyset \) and say the problem is **infeasible** in this case.

- We may also have \(z_{MP} = \infty \) when the problem is **unbounded**, e.g., \(f \) is a linear function and \(\exists \hat{x} \in F \) and \(d \in \mathbb{R}^n \) such that
 - \(x + \lambda d \in F \) for all \(\lambda \in \mathbb{R}_+ \),
 - \(f(d) > 0 \).

- Note that there is a difference between the **feasible region** being unbounded and the **problem** being unbounded.
Solutions

• A *solution* is an assignment of values to variables.

• A solution can hence be thought of as an n-dimensional vector.

• A *feasible solution* is an assignment of values to variables such that all the constraints are satisfied, i.e., a member of \mathcal{F}.

• The *objective function value* of a solution is obtained by evaluating the objective function at the given point.

• An *optimal solution* (assuming maximization) is one whose objective function value is greater than or equal to that of all other feasible solutions.

• Note that a mathematical optimization problem may not have an optimal solution.

• **Question**: What are the different ways in which this can happen?
Possible Outcomes

• When we say we are going to “solve” a mathematical optimization problem, we mean to determine
 – whether it has an optimal value (meaning z_{MP} is finite), and
 – whether it has an optimal solution (the supremum can be attained).

• Note that the supremum may not be attainable if, e.g., \mathcal{F} is an open set.

• We may also want to know some other things, such as the status of its “dual” or about sensitivity.
Types of Mathematical Optimization Problems

• The type of a mathematical optimization problem is determined primarily by
 – The form of the objective and the constraints.
 – Whether there are integer variables or not.

• In 406, you learned about linear models.
 – The objective function is linear.
 – The constraints are linear.

• The most important determinants of whether a mathematical optimization problem is “tractable” are the convexity of
 – The objective function.
 – The feasible region.
Types of Mathematical Optimization Problems (cont’d)

- Mathematical optimization problems are generally classified according to the following dichotomies.
 - Linear/nonlinear
 - Convex/nonconvex
 - Discrete/continuous
 - Stochastic/deterministic

- See the NEOS guide for a more detailed breakdown.

- This class concerns (primarily) models that are discrete, linear, and deterministic (and as a result generally non-convex)
The Formal Setting for This Course

- We consider linear optimization problems in which we additionally impose that \(x \in \mathbb{Z}_+^p \times \mathbb{R}_+^{n-p} \).

- The general form of such a mathematical optimization problem is

\[
\begin{align*}
 z_{IP} &= \max \{ c^\top x \mid x \in S \}, \\
 \text{(MILP)}
\end{align*}
\]

where for \(A \in \mathbb{Q}^{m \times n}, b \in \mathbb{Q}^m, c \in \mathbb{Q}^n \). we have

\[
\begin{align*}
 \mathcal{P} &= \{ x \in \mathbb{R}^n \mid Ax \leq b \} \quad \text{(FEAS-LP)} \\
 \mathcal{S} &= \mathcal{P} \cap (\mathbb{Z}_+^p \times \mathbb{R}_+^{n-p}) \quad \text{(FEAS-MIP)}
\end{align*}
\]

- This type of optimization problem is called a **mixed integer linear optimization problem** (MILP).

- If \(p = n \), then we have a **pure integer linear optimization problem**, or an **integer optimization problem** (IP).

- If \(p = 0 \), then we have a **linear optimization problem** (LP).

- The first \(p \) components of \(x \) are the **discrete** or **integer** variables and the remaining components consist of the **continuous** variables.
Conventions and Notation

If not otherwise stated, the following conventions will be followed for lecture slides during the course:

- A will denote a matrix of dimension m by n (rational).
- b will denote a vector of dimension m (rational).
- x will denote a vector of dimension n.
- c will denote a vector of dimension n (rational).
- p will be the number of integer variables.
- P will denote a polyhedron contained in \mathbb{R}^n, usually given in the form

$$P = \{ x \in \mathbb{R}^n \mid Ax \leq b \}$$

- S will be $P \cap (\mathbb{Z}^p_+ \times \mathbb{R}^{n-p})$.
- An integer program is then described fully by the quadruplet (A, b, c, p).
- Vectors will be column vectors unless otherwise noted.
- When taking the product of vectors, we will sometimes leave off the transpose.
Additional Notation

- The notation A_N will denote a submatrix formed by taking the columns indexed by set $N \subseteq \{1, \ldots, n\}$.

- We will sometimes use the notation $I = \{1, \ldots, p\}$ and $C = \{p+1, \ldots, n\}$.

- Then A_C is a matrix formed by the columns of A corresponding to the continuous variables.

- Similarly, A_I is a matrix formed by the columns of A corresponding to the integer variables.

- The i^{th} column of A will be denoted A_i.

- The i^{th} row of A will be denoted a_i.
Special Case: Binary Integer Optimization

- In many cases, the variables of an IP represent yes/no decisions or logical relationships.
- These variables naturally take on values of 0 or 1.
- Such variables are called *binary*.
- IPs involving only binary variables are called *binary integer optimization problems* (BIPs) or *0 – 1 integer optimization problems* (0 – 1 IPs).
Combinatorial Optimization

- A *combinatorial optimization problem* $CP = (N, F)$ consists of
 - A finite *ground set* N,
 - A set $F \subseteq 2^N$ of *feasible solutions*, and
 - A *cost function* $c \in \mathbb{Z}^n$.

- The *cost* of $F \in F$ is $c(F) = \sum_{j \in F} c_j$.

- The combinatorial optimization problem is then

 $\max\{c(F) \mid F \in F\}$

- There is a natural association with a $0 - 1$ IP.

- Many COPs can be written as BIPs or MILPs.
Some Notes

• The form of the problem we consider will be maximization by default, since this is the standard in the reference texts.

• I normally think in terms of minimization by default, so please be aware that this may cause some confusion.

• Also note that the definition of S includes non-negativity, but the definition of P does not.

• One further assumption we will make is that the constraint matrix is rational. Why?
Some Notes

• The form of the problem we consider will be maximization by default, since this is the standard in the reference texts.

• I normally think in terms of minimization by default, so please be aware that this may cause some confusion.

• Also note that the definition of S includes non-negativity, but the definition of P does not.

• One further assumption we will make is that the constraint matrix is rational. Why?
 – This is an important assumption since with irrational data, certain “intuitive” results no longer hold (such as what?)
 – A computer can only understand rational data anyway, so this is not an unreasonable assumption.
How Difficult is MILP?

• Solving general integer MILPs can be much more difficult than solving LPs.

• There is no known *polynomial-time* algorithm for solving general MILPs.

• Solving the associated *LP relaxation*, an LP obtained by dropping the integerality restrictions, results in an upper bound on z_{IP}.

• Unfortunately, solving the *LP relaxation* may not tell us much.

 – Rounding to a feasible integer solution may be difficult.
 – The optimal solution to the LP relaxation can be arbitrarily far away from the optimal solution to the MILP.
 – Rounding may result in a solution far from optimal.
Discrete Optimization and Convexity

- One reason why convex problems are “easy” to solve is because convexity makes it easy to find improving feasible directions.

- Optimality criterion for a linear program are equivalent to “no improving feasible directions.”

- The feasible region of an MILP is nonconvex and this makes it difficult to find feasible directions.

- The algorithms we use for LP can’t easily be generalized.

- Although the feasible set is nonconvex, there is a convex set over which we can optimize in order to get a solution (why?).

- The challenge is that we do not know how to describe that set.

- Even if we knew the description, it would in general be too large to write down explicitly.

- Integer variables can be used to model other forms of nonconvexity, as we will see later on.
The Geometry of an MILP

- Let's consider again an integer optimization problem

\[
\begin{align*}
\text{max} & \quad c^\top x \\
\text{s.t.} & \quad Ax \leq b \\
& \quad x \in \mathbb{Z}^n_+
\end{align*}
\]

- The feasible region is the integer points inside a polyhedron.

- Why does solving the LP relaxation not necessarily yield a good solution?
How General is Discrete Optimization?

• A natural question to ask is just how general this language for describing optimization problems is.

• Is this language general enough that we should spend time studying it?

• To answer this question rigorously requires some tools from an area of computer science called complexity theory.

• We can say informally, however, that the language of mathematical optimization is very general.

• One can show that almost anything a computer can do can be described as a mathematical optimization problem\(^1\).

• Mixed integer linear optimization is not quite as general, but is complete for a broad class of problems called NP.

• We will study this class later in the course.

\(^1\)Formally, mathematical optimization can be shown to be a “Turing-complete” language
Conjunction versus Disjunction

• A more general mathematical view that ties integer programming to logic is to think of integer variables as expressing \textit{disjunction}.

• The constraints of a standard mathematical program are \textit{conjunctive}.
 – All constraints must be satisfied.
 – In terms of logic, we have

\[g_1(x) \leq b_1 \text{ AND } g_2(x) \leq b_2 \text{ AND } \cdots \text{ AND } g_m(x) \leq b_m \]

(1)

 – This corresponds to \textit{intersection} of the regions associated with each constraint.

• Integer variables introduce the possibility to model \textit{disjunction}.
 – At least one constraint must be satisfied.
 – In terms of logic, we have

\[g_1(x) \leq b_1 \text{ OR } g_2(x) \leq b_2 \text{ OR } \cdots \text{ OR } g_m(x) \leq b_m \]

(2)

 – This corresponds to the \textit{union} of the regions associated with each constraint.
Representability Theorem

The connection between integer programming and disjunction is captured most elegantly by the following theorem.

Theorem 1. *(MILP Representability Theorem)* A set $\mathcal{F} \subseteq \mathbb{R}^n$ is MILP representable if and only if there exist rational polytopes $\mathcal{P}_1, \ldots, \mathcal{P}_k$ and vectors $r^1, \ldots, r^t \in \mathbb{Z}^n$ such that

$$\mathcal{F} = \bigcup_{i=1}^{k} (\mathcal{P}_i + \text{intcone}\{r^1, \ldots, r^t\})$$

- Roughly speaking, we are optimizing over a union of polyhedra all of which have the same recession cone.
- This class of problem can also be obtained simply by introducing a disjunctive logical operator to the language of linear programming.
Connection with Other Fields

• Integer programming can be studied from the point of view of a number of fundamental mathematical disciplines:
 – Algebra
 – (Projective) Geometry
 – Topology
 – Combinatorics
 * Matroid theory
 * Graph theory
 – Logic
 * Set theory
 * Formal systems and proof theory
 * Computability/complexity theory

• There are also (many) other related disciplines:
 – Constraint programming
 – Answer set programming
 – Logic programming
 – Satisfiability
 – Planning and artificial intelligence
Basic Themes

Our goal will be to expose the geometrical structure of the feasible region (at least near the optimal solution). We can do this by

• Convexification
• Outer/Inner approximation
• Lifting and Projection

An important component of the algorithms we consider will be mechanisms for computing bounds by either

• Relaxation
• Duality

When all else fails, we will employ a basic principle: divide large, difficult problems into smaller ones.

• Logic (conjunction/disjunction)
• Implicit enumeration
• Decomposition