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Reading for This Lecture

• Chapter 4, Section 2
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Optimality Conditions

Inequality Constrained Problems (continued)
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Fritz-John Necessary Conditions

Theorem 1. Consider the feasible region S = {x ∈ X : gi(x) ≤ 0, i ∈
[1,m]} where X is a nonempty open set in Rn and gi : Rn → R, i ∈ [1,m].
Given a feasible x∗ ∈ S, set I = {i : gi(x∗) = 0}. Assume that f and gi

are differentiable at x∗ for i ∈ I and gi is continuous at x∗ for i /∈ I. If x∗

is a local minimum, then there exists µ ∈ Rm such that

µ0 5 f(x∗) +
∑

µi 5 gi(x∗) = 0

µigi(x∗) = 0 ∀i ∈ [1,m]

µ≥ 0

µ 6= 0
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Terminology

• The µi’s are called Lagrange multipliers or dual multipliers.

• The requirement that x∗ ∈ S is called the primal feasibility (PF)
condition.

• The requirement that µ0 5 f(x∗) +
∑

µi 5 (x∗) = 0 is called the dual
feasibility (DF) condition.

• The requirement that µigi(x∗) = 0 ∀i ∈ [1,m] is called the
complementary slackness (CS) condition.

• FJ points are those satisfying PF, DF and CS.
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Fritz-John Sufficient Conditions

• Note that a point is an FJ point if and only if F0 ∩G0 is empty.

• Notation and setup as for necessary conditions.

Theorem 2. If there exists Nε(x∗), ε > 0 such that f is pseudoconvex
and gi, i ∈ I are strictly pseudoconvex over Nε(x∗) ∩ S, where S is the
relaxed feasible region without the nonbinding constraints, then x∗ is a
local minimum.

• There are also other possible sufficient conditions.
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Remarks on the FJ conditions

• These conditions hold trivially in many cases.

• In particular, if G0 = ∅, they will hold, regardless of the objective function
(take µ0 = 0).

• Even for LP, there are non-optimal FJ points.

• We want to force µ0 > 0 in order to take the objective function into
account.

• We do this by using a constraint qualification.
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KKT Necessary Conditions

• We now require that the gradients of the binding constraints be linearly
independent. This implies that G0 6= ∅ and hence µ0 > 0.

• In this case, we can drop the condition that µ 6= 0 and we get x∗ locally
optimal ⇒ there exists µ ∈ Rm such that

5f(x∗) +
∑

µi 5 gi(x∗) = 0

µigi(x∗) = 0 ∀i ∈ [1,m]

µ≥ 0
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Remarks on the KKT conditions

• Again, we have PF, DF and CS conditions. These make up the KKT
conditions.

• x∗ is a KKT point if the KKT conditions are satisfied at x∗.

• For a linear program, the KKT conditions are simply the standard
optimality conditions for LP.

• Using previous notation, note that x∗ is a KKT point if and only F0∩G
′
0

is empty

• Furthermore, x∗ is a KKT point if and only if x∗ is the solution to the
first-order LP approximation to the NLP

min{f(x∗) +5f(x∗)T (x− x∗) : gi(x∗) +5gi(x∗)T (x− x∗) ≤ 0, i ∈ [1,m]}
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KKT Sufficient Conditions (1st Order)

• We have the same setup as before.

Theorem 3. Let x∗ be a KKT point and let I = {i : gi(x∗) = 0}. If f
is pseudoconvex at x∗ and if gi, i ∈ I are differentiable and quasiconvex
at x∗, x∗ is then a global optimal solution.

• There are other possible sufficient conditions.

9


