Advanced Mathematical Programming IE417

Lecture 7

Dr. Ted Ralphs

Reading for This Lecture

• Chapter 4, Section 2

Optimality Conditions

Inequality Constrained Problems (continued)

Fritz-John Necessary Conditions

Theorem 1. Consider the feasible region $S = \{x \in X : g_i(x) \le 0, i \in [1, m]\}$ where X is a nonempty open set in \mathbb{R}^n and $g_i : \mathbb{R}^n \to \mathbb{R}, i \in [1, m]$. Given a feasible $x^* \in S$, set $I = \{i : g_i(x^*) = 0\}$. Assume that f and g_i are differentiable at x^* for $i \in I$ and g_i is continuous at x^* for $i \notin I$. If x^* is a local minimum, then there exists $\mu \in \mathbb{R}^m$ such that

$$\mu_0 \bigtriangledown f(x^*) + \sum \mu_i \bigtriangledown g_i(x^*) = 0$$
$$\mu_i g_i(x^*) = 0 \forall i \in [1, m]$$
$$\mu \ge 0$$
$$\mu \ne 0$$

Terminology

- The μ_i 's are called *Lagrange multipliers* or *dual multipliers*.
- The requirement that $x^* \in S$ is called the *primal feasibility* (PF) condition.
- The requirement that μ₀ ⊽ f(x*) + ∑ μ_i ⊽ (x*) = 0 is called the *dual feasibility* (DF) condition.
- The requirement that $\mu_i g_i(x^*) = 0 \quad \forall i \in [1, m]$ is called the *complementary slackness* (CS) condition.
- *FJ points* are those satisfying PF, DF and CS.

Fritz-John Sufficient Conditions

- Note that a point is an FJ point if and only if $F_0 \cap G_0$ is empty.
- Notation and setup as for necessary conditions.

Theorem 2. If there exists $N_{\epsilon}(x^*)$, $\epsilon > 0$ such that f is pseudoconvex and $g_i, i \in I$ are strictly pseudoconvex over $N_{\epsilon}(x^*) \cap S$, where S is the relaxed feasible region without the nonbinding constraints, then x^* is a local minimum.

• There are also other possible sufficient conditions.

Remarks on the FJ conditions

- These conditions hold trivially in many cases.
- In particular, if $G_0 = \emptyset$, they will hold, regardless of the objective function (take $\mu_0 = 0$).
- Even for LP, there are non-optimal FJ points.
- We want to force $\mu_0 > 0$ in order to take the objective function into account.
- We do this by using a *constraint qualification*.

KKT Necessary Conditions

- We now require that the gradients of the binding constraints be linearly independent. This implies that $G_0 \neq \emptyset$ and hence $\mu_0 > 0$.
- In this case, we can drop the condition that $\mu \neq 0$ and we get x^* locally optimal \Rightarrow there exists $\mu \in \mathbb{R}^m$ such that

$$\nabla f(x^*) + \sum \mu_i \nabla g_i(x^*) = 0$$
$$\mu_i g_i(x^*) = 0 \ \forall i \in [1, m]$$
$$\mu \ge 0$$

Remarks on the KKT conditions

- Again, we have PF, DF and CS conditions. These make up the *KKT* conditions.
- x^* is a *KKT point* if the KKT conditions are satisfied at x^* .
- For a linear program, the KKT conditions are simply the standard optimality conditions for LP.
- Using previous notation, note that x^* is a KKT point if and only $F_0 \cap G_0'$ is empty
- Furthermore, x^* is a KKT point if and only if x^* is the solution to the first-order LP approximation to the NLP

 $\min\{f(x^*) + \nabla f(x^*)^T(x - x^*) : g_i(x^*) + \nabla g_i(x^*)^T(x - x^*) \le 0, i \in [1, m]\}$

KKT Sufficient Conditions (1^{st} Order)

• We have the same setup as before.

Theorem 3. Let x^* be a KKT point and let $I = \{i : g_i(x^*) = 0\}$. If f is pseudoconvex at x^* and if $g_i, i \in I$ are differentiable and quasiconvex at x^* , x^* is then a global optimal solution.

• There are other possible sufficient conditions.