Advanced Mathematical Programming IE417

Lecture 3

Dr. Ted Ralphs

Reading for This Lecture

- Primary Reading
 - Chapter 2, Sections 4-7
- Secondary Reading
 - Chapter 1
 - Appendix A

Hyperplanes and Half-spaces

- A hyperplane is a set of the form $H = \{x : p^T x = \alpha\}$ where p is a nonzero vector in \mathbb{R}^n and α is a scalar.
- A hyperplane defines two *closed half-spaces* $H^- = \{x : p^T x \le \alpha\}$ and $H^+ = \{x : p^T x \ge \alpha\}.$
- There are also corresponding *open half-spaces*.
- A hyperplane $H = \{x : p^T x = \alpha\}$ is said to *separate* two nonempty sets S_1 and S_2 if

-
$$S_1 \subseteq \{x : p^T x \le \alpha\}$$
, and
- $S_2 \subseteq \{x : p^T x \ge \alpha\}$

Separation Theorem I

Theorem 1. Let S be a nonempty, closed convex set in \mathbb{R}^n and $y \notin S$. Then there exists a unique point $x^* \in S$ with minimum distance from y. Furthermore, x is the minimizing point if and only if $(y - x^*)^T (x - x^*) \leq 0 \quad \forall x \in S$.

- What is this really saying?
- Idea of Proof:

Separation Theorem II

Theorem 2. Let S be a nonempty, closed convex set in \mathbb{R}^n and $y \notin S$. Then there exists a nonzero vector p and a scalar α such that $p^T y > \alpha$ and $p^T x \leq \alpha$ for every $x \in S$.

- What is this really saying?
- Idea of Proof:

Corollaries

Corollary 1. Let S be a closed, convex set in \mathbb{R}^n . Then S is the intersection of all half-spaces containing S.

Corollary 2. Let S be a nonempty set in \mathbb{R}^n , and let $y \notin cl(conv(S))$. Then there exists a hyperplane strongly separating y and S.

Farkas Theorem

Theorem 3. Let $A \in \mathbb{R}^{m \times n}$ and $c \in \mathbb{R}^m$. Then exactly one of the following systems has a solution:

- I. $Ax \leq 0$ and $c^T x > 0$. II. $A^T y = c$ and $y \geq 0$.
- This can be seen as a consequence of the preceding theorem (how?).
- Also see Gordon's Theorem.

Supporting Hyperplane Theorem

Definition 1. Let S be a nonempty set in \mathbb{R}^n and let x^* be in the boundary of S. A hyperplane $H = \{x \in \mathbb{R}^n : p^T(x - x^*) = 0\}$ is called supporting of S at x^* if either $S \subseteq H^+$ or $S \subseteq H^-$.

Theorem 4. Let S be a nonempty, convex set in \mathbb{R}^n and let x^* be in the boundary of S. Then there exists a hyperplane that supports S at x^* .

Idea of Proof:

Separation of Convex Sets

Theorem 5. Let S_1 and S_2 be nonempty convex sets in \mathbb{R}^n . If $S_1 \cap S_2$ is empty, then there exists a hyperplane that separates S_1 and S_2 .

Theorem 6. Let S_1 and S_2 be closed convex sets in \mathbb{R}^n and suppose that S_1 is bounded. If $S_1 \cap S_2$ is empty, then there exists a hyperplane that strongly separates S_1 and S_2 .

Cones and Polar Cones

- A nonempty set C in \mathbb{R}^n is called *cone* with vertex 0 if $x \in C \Rightarrow \lambda x \in C \forall \lambda \geq 0$.
- Let S be a nonempty set in \mathbb{R}^n . The *polar cone* of S, is $S^* = \{p : p^T x \leq 0 \forall x \in S\}$.

Theorem 7. Let C be a nonempty closed convex cone. Then $C = C^{**}$.

• Examples: