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In the Beginning...

� In the beginning, Weierstrass's theorem said that a 
continuous function achieves a minimum on a compact 
set.

� Using this, we showed that for a convex set S and y not 
in the set, there is a unique point in S with minimum 
distance from y. 

� This allowed us to show that we can separate a convex 
set S from any point not in the set.

� Finally, we arrived at Farkas' Theorem which is at the 
heart of all optimization theory.



Convex Functions

� Recall that if f:S→ Rn is twice-differentiable, then f is 
convex if and only if the Hessian of f is positive 
semidefinite at each point in S.

� If f is convex and S is a convex set, the point x* ∈ S is an 
optimal solution to the problem min

x∈S 
f(x) if and only if f 

has a subgradient ξ such that ξT(x - x*) ≥ 0  ∀x ∈ S.

� Note that this is equivalent to there begin no improving, 
feasible directions.

� Hence, if S is open, then x* is an optimal solution if and 
only if there is a zero subgradient of f at x*.



Characterizing Improving Directions
Unconstrained Optimization

� Consider the unconstrained optimization problem

min f(x)
s.t. x ∈ X

where X is an open set (typically Rn).

� If f is differentiable at x* and there exists a vector d such 
that ∇f(x*)Td < 0, then d is an improving direction.

� If ∇f(x*)Td > 0 ∀d ∈ Rn, then there are no improving 
directions.



Optimality Conditions
Unconstrained Optimization

� If x* is a local minimum and f is differentiable at x*, then 
∇f(x*) = 0 and H(x*) is positive semi-definite.

� If  f is differentiable at x*, ∇f(x*) = 0, and H(x*) is 
positive definite, then x* is a local minimum.

� If f is convex and x* is a local minimum, then x* is a 
global minimum.

� If f is strictly convex and x* is a local minimum, then x* 
is the unique global minimum.

� If f is convex and differentiable on the open set X, then 
x* ∈ X is a global minimum if and only if ∇f(x*) = 0.



Constrained Optimization

� Now consider the constrained optimization problem

min f(x)
s.t. g

i
(x) ≤ 0 ∀ i ∈ [1, m]

h
i
(x) = 0 ∀ i ∈ [1, l]

x ∈ X

where X is again an open set (typically Rn).



Feasible and Improving Directions
Constrained Optimization

�

Definition: Let S be a nonempty set in Rn and let x* ∈ cl
S. The cone of feasible directions of S at x* is given by 

D = {d: d ≠ 0 and x* + λd ∈ S, ∀λ ∈ (0, δ), ∃δ > 0}

�

Definition: Let S be a nonempty set in Rn and let x* ∈ cl 
S. Given a function f:Rn → R, the cone of improving 
directions of f at x* is given by 

F = {d: f(x* + λd) <  f(x*), ∀λ ∈ (0, δ), ∃δ > 0}



Necessary Conditions
Constrained Optimization

� If x* is a local minimum, then F∩D = ∅.

� The converse is not true.

�

Given a feasible x* ∈ X, set I = {i: g
i
(x*) = 0}.

�

Define F
0
 = {d: ∇f(x*)Td < 0} and F

0
′ = {d: d ≠ 0, 

∇f(x*)Td ≤ 0}. Then F
0  ⊆ F ⊆ F

0
′.

�

Define G
0
 = {d: ∇g

i
(x*)Td < 0 ∀i ∈ I} and G

0
′ = {d: d ≠ 

0, ∇g
i
(x*)Td ≤ 0 ∀i ∈ I}. Then G

0  ⊆ D ⊆ G
0
′. 



Fritz-John Conditions
Constrained Optimization

� If x* is a local minimum, then F
0
∩G

0
 = ∅.

� F
0
∩G

0
 = ∅ if and only if there exists µ,ν

 
∈ Rm such that 

µ0∇f(x*) + ∑µ
i
∇g

i
(x*) + ∑ν

i
∇h

i
(x*) = 0

     µ
i
g

i
(x*) = 0   ∀ i ∈ [1, m]

   µ ≥ 0 
  (µ,ν) ≠ 0

� These are the FJ conditions.



KKT Conditions
Constrained Optimization

� Assuming that ∇g
i
(x*) and ∇h

i
(x*) are linearly 

independent, then µ0 > 0 and we obtain the KKT 

conditions:

∇f(x*) + ∑µ
i
∇g

i
(x*) + ∑ν

i
∇h

i
(x*) = 0

  µ
i
g

i
(x*) = 0   ∀ i ∈ [1, m]

     µ ≥ 0 
     

� x* is a KKT point is and only if F
0
∩G

0
′ = ∅.



The Restricted Lagrangian

� Recall the restricted Lagrangian at x* with respect to dual 
multipliers u* ≥ 0 and v*:

L(x) = f(x) + Σ
i∈I

 u
i
*g

i
(x) + Σv

i
*h

i
(x)

� The KKT conditions are equivalent to ∇L(x*) = 0.

� Notice that this is an attempt to include the requirement 
for feasibility into the objective function.

� This converts constrained optimization into 
unconstrained.



Second-order Conditions

� Suppose x* is a KKT point with restricted Lagrangean 
function L.

� If ∇2L is positive semi-definite ∀x∈S, Then x* is a global 
minimum.

� If ∇2L is positive semi-definite in a neighborhood of x*, then x* 
is a local minimum.

� If ∇2L(x*) is positive definite, then x* is a strict local minimum.

� From this, we can derive second-order necessary and 
sufficient conditions.



Convex Programs

� The KKT conditions are sufficient for convex programs:

� f is convex

� g
1
, ..., g

m
 is convex

� h
1
, ..., h

l
 is linear

� The KKT conditions are necessary and sufficient for 
convex programs with all linear constraints.

� Recall that convex functions are exactly those for which 
the set of improving directions can be characterized.



A Word about Necessary and 
Sufficient Conditions

� If the KKT conditions are sufficient (as when we have 
convexity), then any KKT point will be optimal.

� However, just because there does not exist a KKT point 
does not mean there is no optimal solution.

� On the other hand, if the KKT conditions are necessary 
and there is a KKT point, this does not mean that the 
problem has an optimal solution. The problem can still 
be unbounded.

� Only in cases where the KKT conditions are necessary 
and sufficient can we simply enumerate all KKT points 
and draw a definite conclusion about optimality.



Other Constraint Qualifications

� There are other (less restrictive) conditions which imply 
the necessity of the KKT conditions (Chapter 5).

� For convex programs, the Slater condition implies the 
necessity of the KKT conditions.

� ∇h
i
(x*) are linearly independent.

� there exists x′ ∈ S such that g
i
(x′) < 0 ∀ i ∈ Ι.



The Lagrangian Dual

� Let Φ(x, u, v) = f(x) + uTg(x) + vTh(x).

� We now formulate the following dual problem D:

max Θ(u, v)
s.t. u ≥ 0

where Θ(u, v) = inf{Φ(x, u, v): x ∈ X}.

� It is straightforward to show weak duality.



Interpreting Lagrangean duality

� Assume we have a well-behaved problem (no duality 
gap).

� Suppose we know the optimal dual multipliers. Then the 
optimal primal solution is given by 

min L(x) = Φ(x, u*, v*), x ∈ X

� Alternatively, if we know the optimal primal solution, 
then the optimal dual multipliers are given by 

max Θ(u, v) = Φ(x*, u, v), u ≥ 0 



Lagrangian Saddle Points

� Intuitively, a saddle point of Φ(x, u, v) is a triple (x*, 
u*, v*) that simultaneously satisfies solves max Θ(u, v) 
and min L(x).

� Hence, a (feasible) saddle point solution will 
automatically be optimal for the primal and the dual.

� The following are equivalent:

� the existence of a feasible saddle point solution (x*, u*, v*),

� the absence of a duality gap,

� the primal-dual optimality of (x*, u*, v*).



Properties of the Dual Function

� The dual function Θ(w) is concave.

� If it is differentiable at w*, then ∇Θ(w*) = (g(x*), h(x*)).

� Otherwise, the direction of steepest ascent is given by 
the subgradient of Θ at w* with the smallest norm.

� To maximize the dual, we generally use subgradient 
optimization.



Algorithms

� An algorithm is defined by its algorithmic map.

� Given our current location, where do we go next?

� This is determined by a mapping A: X → 2|X| which maps 
each point in the domain X to a set of possible "next 
iterates".

� In other words, if the current iterate is x
k
, then 

x
k+1

��� ∈A(x
k
).

� After terminating the algorithm, the final iterate x* will 
be called a solution.



Closed Maps

� An algorithmic map A is said to be closed at x ∈ X if

-x
k
 ∈X and {x

k
} → x

-y
k
 ∈A(x

k
) and {y

k
} → y

implies that y ∈A(x).

� The map A is said to be closed on Z ⊆ X if it is closed at 
each point in Z.

� Under mild conditions, algorithms with closed maps will 
converge.



Line Search Methods

� Line search is fundamental to all optimization 
algorithms. 

� Analytic Methods

� Solve the line search problem analytically. 

� Take the derivative with respect to λ and set it to zero.

� Iterative Methods

� Methods using function evaluations (Golden Section)

� Methods using derivatives (Newton's method)

� Generally guaranteed to converge for pseudoconvex functions.

� We also distinguish between exact and inexact methods.



Algorithms for Unconstrained 
Optimization

� These algorithms are composed of two components

� Choosing a search direction

� Performing a line search

� Under mild conditions, the exact line search map is 
closed.

� There are two basic classes

� Methods using function evaluations,

� Methods using derivatives.



Derivative-free methods

� The basic idea is to search in a sequence of orthogonal 
directions, thereby insuring convergence.

� An acceleration step can be inserted after each sequence 
(Hooke and Jeeves).

� The directions can also be recomputed after each 
sequence (Rosenbrock).

� These methods are generally inferior to those using 
derivative information, but are easy to implement and do 
not require much memory.



Methods Using Derivative Info

� Recall that -∇f(x*) is the direction of steepest descent.

� All of these methods are based on moving in a modified 
steepest descent direction.

� The method of steepest descent has difficulty with 
problems for which the Hessian is ill-conditioned.

� Newton's method deflects the steepest descent direction 
to -H(x*)-1∇f(x*) correct for the ill-conditioning, but is 
not globally convergent.

� The problem occurs when the Hessian is not positive 
definite.



Levenberg-Marquardt and Trust-
Region Methods

� L-M methods

� Perturb the Hessian until it is positive definite.

� Perform a line search in the resulting direction.

� Dynamically adjust the amount of perturbation.

� Trust region methods

� Use a quadratic approximation to the function within a defined 
trust region.

� Solve the approximated problem.

� Adjust the trust region.



Methods of Conjugate Directions

� If H ∈ Rn×n is symmetric, the linearly independent 
vectors d

1
, ..., d

n
 are called H-conjugate if d

i
THd

j
 = 0 for i 

≠ j.

� With conjugate directions, we can minimize a quadratic 
function by performing line searches.

� Quasi-Newton methods

� Idea 1: Use a search direction d
j
 = -D

j
∇f(x) where D

j
 is  

symmetric positive definite and approximates H-1.

� Idea 2: Update D
j
 at each step so that d

j+1
 is a conjugate 

direction.



Conjugate Gradient Methods

� A simpler version of quasi-Newton requiring less 
computation and less memory.

� Idea: Let the next search direction depend on the last 
one, i.e., d

j+1
 = -∇f(y

j+1
) + α

j
d

j

� However, we maintain the requirement that the 
directions be conjugate.

� This turns out to be similar to a "memoryless" quasi-
Newton method.

� These methods are more appropriate for large problems.



Subgradient Methods

� Suppose f is convex/concave, but not differentiable. 

� Instead of using the direction -∇f(x), find a subgradient ξ 
and use -ξ as the search direction.

� The direction is not necessarily a descent direction, but if 
the step size is chosen as follows, these methods do 
converge.

� {λ
k
} → 0 

� Σ λ
k
 = ∞

� Most often used for solving the Lagrangian dual.



Methods for Constrained 
Optimization

� Two classes

� Methods that implicitly enforce the constraints by converting 
to an equivalent unconstrained problem.

� Interior Methods (barrier)

� Exterior Methods (penalty)

� Methods that explicitly enforce the constraints by only 
searching in feasible directions.



Penalty and Barrier Functions

� A penalty function α is α(x) = Σ φ(g
i
(x)) + Σ ψ(h

i
(x)), 

where 

� φ(y) = 0 if y ≤ 0, φ(y) > 0 if y > 0

� ψ(y) = 0 if y = 0, ψ(y) > 0 if y ≠ 0

� A barrier function is B(x) = Σ φ(g
i
(x))

� φ(y) ≥ 0 if y < 0

� lim
y→0+ 

φ(y) = ∞



Implementing Penalty-Barrier

� Initialization: Choose termination scalar ε > 0, an initial 
point x

1
, an initial penalty parameter µ

1 
> 0, and a scalar 

β ∈ (0,1). Set k = 1.

� Loop

� Starting at x
k
, minimize f(x) + α(x)/µ

k
 + µ

k
B(x) subject to x ∈ X 

to obtain x
k+1

.

� If α(x
k+1

)/µ
k
 + µ

k
B(x

k+1
) < ε, then STOP. Otherwise, let µ

k+1
 = 

βµ
k
, replace k by k + 1 and iterate.



Performance of Penalty-Barrirer

� For penalty methods, under some mild conditions, if 
there exists a solution xµ the penalty problem for each µ 

and {xµ} is contained in a compact set, then {xµ} → x*, 

and inf{f(x): x ∈ X, g(x) ≥ 0, h(x) = 0} = lim {Θ(µ)}.

� For barrier methods, under some mild conditions on the 
feasible set and the location of the optimal solution, then 
{xµ} → x*, and

inf{f(x): x ∈ X, g(x) ≥ 0} = lim {Θ(µ)}



Comments on Penalty-Barrier

� Note that these methods depend on the ability to solve 
the penalty-barrier problem.

� These methods are subject to computational difficulties 
with extremely small/large multipliers.

� This is the reason for the incremental algorithms that are 
presented in the text.

� Ill-conditioning can cause further problems.

� In well-behaved examples, we can recover the optimal 
KKT multipliers.



Augmented Lagrangian Methods

� Consider the penalty function ψ(h
i
(x)) = [h

i
(x) -θ

i
]2.

� Assuming only equality constraints, the penalized 
objective function can then be written as 

F(x, v) = f(x) + Σ v
i
h

i
(x) + µΣ [h

i
(x)]2

� Any KKT point satisfying second-order sufficiency 
conditions for being a local min will be a local min of 
this function for sufficiently large µ.



Methods of Feasible Direction

� General Method

� Generate an improving, feasible direction by solving a 
direction-finding program or using projection.

� Perform a line search in that direction.

� These methods are most closely tied to the KKT 
conditions.

� The direction-finding program is the "alternative" to the 
existence of a KKT point.



Summary

� Factors to consider when faced with solving an NLP

� Unconstrained

� Is the function to be minimized convex?

� Is the Hessian ill-conditioned?

� What is the dimension of the problem?

� Constrained

� Is the feasible region convex?

� Are the Hessians of the constraints ill-conditioned?

� Is there a relaxation that is "easy"?


