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In the Beginning...

In the beginning, Welerstrass's theorem said that a
continuous function achieves a minimum on a compact
Set.

Using this, we showed that for a convex set Sand y not
In the set, there Is aunique point in Swith minimum
distance fromy.

This allowed us to show that we can separate a convex
set Sfrom any point not in the set.

Finally, we arrived at Farkas Theoremwhich is at the
heart of all optimization theory.



Convex Functions

Recall that if f:S— R"istwice-differentiable, thenfis
convex If and only if the Hessian of f is positive
semidefinite at each point in S.

If fisconvex and Sisaconvex set, the point X [ Sisan
optimal solution to the problem min __f(x) if and only if f

has asubgradient & suchthat ¢'(x-X)=0 OxOS

Note that thisis equivalent to there begin no improving,
feasible directions.

Hence, If Sisopen, then X isan optimal solution if and
only if thereisazero subgradient of f at X .



Characterizing |mproving Directions

Unconstrained Optimization

e Consder the unconstrained optimization problem

min (X
st. xOX

where X i1s an open set (typicaly R").

e If fisdifferentiable at X' and there exists a vector d such
that [If(X')'d < 0, then d is an improving direction.

If Of(X)'d>00d 0 R", then there are no improving
directions.



Optimality Conditions

Unconstrained Optimization

f X isaloca minimum and f isdifferentiable at X', then
[1f(X') = 0 and H(X) is positive semi-definite.

f fisdifferentiable at X', f(X) =0, and H(X) Is
nositive definite, then X 1saloca minimum.

f fisconvex and X i1saloca minimum, then X isa
globa minimum.

If fisstrictly convex and X isalocal minimum, then X
IS the unigue global minimum.

If fisconvex and differentiable on the open set X, then
X 1 X isaglobal minimum if and only if Lf(xX") = 0.



Constrained Optimization

* Now consider the constrained optimization problem

min (X

st. gX¥<00i10O[1, m
h(x)=0010[1,1]
x X

where X is again an open set (typically R").



Feasible and Improving Directions
Constrained Optimization

* Définition: Let Sbe anonempty set in R"and let X [ ¢l
S The cone of feasible directions of Sat X isgiven by

D={d:d#0andx +Ad [0S OA O (0, 8), (5> O}

* Définition: Let Sbe anonempty set in R"and let X' [ cl

S Given afunction f:R" - R, the cone of improving
directionsof f at X' isgiven by

F={d: f(x +Ad) < f(X), DA O (0, d), (®> 0}




Necessary Conditions
Constrained Optimization

If X 1salocal minimum, then FnD = 1.

The converse is not true.

Givenafeasblex U X, set | ={I: g(X) =0}.
Define F, ={d: Of(x)Td< 0} and F' ={d: d# 0,
f(x)Td< 0}. ThenF, OFOF,'.

Define G, ={d: Og(x)Td<00i 01} and G,/ ={d: d#
0,0g(x)Td<00i01}. ThenG, ODOG,'



Fritz-John Conditions
Constrained Optimization

e |f X Isalocal minimum, then F,nG,=0.
e F.nG, =0 if and only if there exists y,v 1 R™ such that

p,Of(¢) + T Og(x) + Tv,Oh(x) =0
Hg(xX)=0 Oi10[1, m

u=0
(k,v) 20

e These are the FJ conditions.



KKT Conditions

Constrained Optimization

e Assuming that Og(X') and Uh(X') are linearly
independent, then |, > 0 and we obtain the KKT
conditions:

Lf(X) + > g (X) + >v.h(X) =0
Hg(xX)=0 Oi10O[1, m
u=0

e X1saKKT pointisandonly if F.nG, = 0.



The Restricted Lagrangian

Recall the restricted Lagrangian at X with respect to dual
multipliersu” =z 0and v':

L(X) =f(x) + >, u'g(X) + 2v. h(X)
The KKT conditions are equivalent to LIL(X) = 0.

Notice that thisis an attempt to include the requirement
for feasibility into the objective function.

This converts constrained optimization into
unconstrai ned.



Second-order Conditions

e Suppose X isaKKT point with restricted Lagrangean
function L.

- If O%L is positive semi-definite xS, Then X isaglobal
minimum.

- |f O%L is positive semi-definite in a neighborhood of X', then X
Isalocal minimum.

- If O°L(X) is positive definite, then X isastrict local minimum.

* From this, we can derive second-order necessary and
sufficient conditions.



Convex Programs

* The KKT conditions are sufficient for convex programs:
- fisconvex
- g,, ..., g_lsconvex

- hl, hI 1S linear

* The KKT conditions are necessary and sufficient for
convex programs with all linear constraints.

* Recall that convex functions are exactly those for which
the set of improving directions can be characterized.



A Word about Necessary and
Sufficient Conditions

If the KKT conditions are sufficient (as when we have
convexity), then any KKT point will be optimal.

However, just because there does not exist aKKT point
does not mean there is no optimal solution.

On the other hand, if the KKT conditions are necessary
and there isa KKT point, this does not mean that the
problem has an optimal solution. The problem can still
be unbounded.

Only in cases where the KKT conditions are necessary
and sufficient can we simply enumerate all KKT points
and draw a definite conclusion about optimality.



Other Constraint Qualifications

* There are other (lessrestrictive) conditions which imply
the necessity of the KKT conditions (Chapter 5).

* For convex programs, the Sater condition implies the
necessity of the KKT conditions.

- Uh(X) are linearly independent.
- there existsX O Ssuch that g(x) <O U1 O,



The Lagrangian Dual

* et d(x u,Vv)="1(X)+u'g(x) +Vvh(x).

* \We now formulate the following dual problem D:

max  O(u, V)
st. u=20

where O(u, v) = Inf{ ®(x, u, v): x L X}.

e |tisstraghtforward to show weak duality.



Interpreting Lagrangean duality

* Assume we have awell-behaved problem (no duality
gap).

e Suppose we know the optimal dual multipliers. Then the
optimal primal solution is given by

minL(X) = d(x, u’, v), x X

e Alternatively, if we know the optimal primal solution,
then the optimal dual multipliers are given by

max O(u, v) = ®(X, u,v),u=0



L agrangian Saddle Points

* Intuitively, asaddle point of d(x, u, v) isatriple (X,
u’, v') that ssmultaneously satisfies solves max ©(u, v)
and min L(X).

* Hence, a(feasible) saddle point solution will
automatically be optimal for the primal and the dual.

* The following are equivalent:

— the existence of afeasible saddle point solution (X, u’, V'),
- the absence of aduality gap,
- the primal-dual optimality of (X', u’, v').



Properties of the Dual Function

The dual function @(w) is concave.
Iifitisdifferentiable at w', then JOW) = (g(X), h(x")).

Otherwise, the direction of stegpest ascent is given by
the subgradient of © at w* with the smallest norm.

To maximize the dual, we generally use subgradient
optimization.



Algorithms

An agorithm is defined by its algorithmic map.
Given our current location, where do we go next?

Thisis determined by a mapping A: X - 2Xlwhich maps
each point in the domain X to a set of possible "next
Iterates’.

In other words, If the current iterate is x, then
Xk+1 |:l'A\(Xk)

After terminating the algorithm, the final iterate X' will
be called a solution.



Closed Maps

 Analgorithmic map Aissaid to be closed at x L1 X if

-X OX and {x} - X
-y HAX) and{y} -y

implies that y OA(X).

* Themap Aissadtobeclosedon Z L1 X if it isclosed at
each pointin Z.

e Under mild conditions, algorithms with closed maps will
converge.



Line Search Methods

Line search is fundamental to all optimization
algorithms.

Analytic Methods

- Solve the line search problem analytically.
- Takethe derivative with respect to A and set it to zero.

lterative Methods

— Methods using function evaluations (Golden Section)
- Methods using derivatives (Newton's method)
- Generadly guaranteed to converge for pseudoconvex functions.

We al so distinguish between exact and inexact methods.



Algorithms for Unconstrained
Optimization

* These algorithms are composed of two components

- Choosing a search direction
- Performing aline search

e Under mild conditions, the exact line search map Is
closed.

e There aretwo basic classes

- Methods using function evaluations,
- Methods using derivatives.



Derivative-free methods

* Thebasic ideaisto search in a sequence of orthogonal
directions, thereby insuring convergence.

* An acceleration step can be inserted after each sequence
(Hooke and Jeeves).

* Thedirections can aso be recomputed after each
seguence (Rosenbrock).

* These methods are generally inferior to those using
derivative information, but are easy to implement and do
not reguire much memory.



Methods Using Derivative Info

Recall that -L1f(X") is the direction of stegpest descent.

All of these methods are based on moving in amodified
steegpest descent direction.

The method of steegpest descent has difficulty with
problems for which the Hessian is ill-conditioned.

Newton's method deflects the steepest descent direction
to -H(X)If(X') correct for theill-conditioning, but is
not globally convergent.

The problem occurs when the Hessian is not positive
definite.



L evenberg-Marquardt and Trust-
Region Methods

* L-M methods
- Perturb the Hessian until it is positive definite.
- Perform aline search in the resulting direction.
— Dynamically adjust the amount of perturbation.

* Trust region methods

- Use aquadratic approximation to the function within a defined
trust region.

- Solve the approximated problem.
- Adjust the trust region.



Methods of Conjugate Directions

e |f HO R™issymmetric, the linearly independent
vectorsd,, ..., d are called H-conjugate it d"Hd = 0 for i
£].

* With conjugate directions, we can minimize a quadratic
function by performing line searches.

e Quasi-Newton methods
- ldea l: Useasearch direction d = -D,0f(x) where D is
symmetric positive definite and approximates H.

- |ldea 2: Update D, at each step so that dj+1 IS a conjugate
direction.



Conjugate Gradient Methods

A simpler version of quasi-Newton requiring less
computation and less memory.

Idea: Let the next search direction depend on the |ast
one ie,d, =-0f(y,,)+ad

However, we maintain the reguirement that the
directions be conjugate.

Thisturns out to be similar to a"memoryless' quasi -
Newton method.

These methods are more appropriate for large problems.



Subgradient Methods

Suppose f is convex/concave, but not differentiable.

Instead of using the direction -LIf(X), find a subgradient ¢
and use -¢ as the search direction.

The direction is not necessarily a descent direction, but if
the step size is chosen as follows, these methods do
converge.

-{A\} -0
- > )\k = 00
Most often used for solving the Lagrangian dual.



Methods for Constrained
Optimization
e Two classes

- Methods that implicitly enforce the constraints by converting
to an equivalent unconstrained problem.

* Interior Methods (barrier)
* Exterior Methods (penalty)

- Methods that explicitly enforce the constraints by only
searching in feasible directions.



Penalty and Barrier Functions

e A penalty function a isa(x) =2 ¢(g(x)) + Z W(h(x)),
where
- @y)=0ify<0,0y)>0ify>0
- Py)=0ify=0,y(y) >0ify£0
e A barrier functionis B(X) = Z ((g.(x))

- @y)=20ify<O
- Iimyﬁo+(p(y) = 00



|mplementing Penalty-Barrier

nitialization: Choose termination scalar € > 0, an initial

point x,, an initial penalty parameter |1, > 0, and a scalar
30(0,1). Setk=1.

_oop

- Starting at X, minimize f(x) + a(x)/y, + p, B(X) subject to x 1 X
toobtain x ..

- Ifax, )y + K B(x,,) <€ then STOP. Otherwise, let y ,, =
By, replace k by k+ 1 and iterate.



Performance of Penalty-Barrirer

* For penaty methods, under some mild conditions, if
there exists a solution x the penalty problem for each p

and {xu} IS contained in a compact set, then {xu} - X,
and inf{f(x): xO X, g(x) =0, h(x) =0} =lim {O()}.

 [or barrier met

nods, under some mild conditions on the

feasible sat and
{xu} - X, and

the location of the optimal solution, then

inf{f(x): x 0 X, g(x) = 0} = lim{O()}



Comments on Penalty-Barrier

Note that these methods depend on the ability to solve
the penalty-barrier problem.

These methods are subject to computational difficulties
with extremely small/large multipliers.

Thisisthe reason for the incremental algorithmsthat are
oresented in the text.

||-conditioning can cause further problems.

n well-behaved examples, we can recover the optimal
KKT multipliers.




Augmented L agrangian Methods

e Consider the penalty function g(h(x)) = [h(x) -6]°.

e Assuming only equality constraints, the penalized
obj ective function can then be written as

F(x, v) = f(x) + Zvh(x) + ux [h(X)]*

 Any KKT point satisfying second-order sufficiency
conditions for being alocal min will be aloca min of
this function for sufficiently large [.



Methods of Feasible Direction

e Genera Method

— Generate an improving, feasible direction by solving a
direction-finding program or using projection.

- Perform aline search in that direction.

* These methods are most closdly tied to the KKT
conditions.

* Thedirection-finding program isthe "aternative' to the
existence of aKKT point.



Summary

* Factorsto consider when faced with solving an NLP

- Unconstrained

e |sthefunction to be minimized convex?
e |stheHessian ill-conditioned?
* What isthe dimension of the problem?

— Constrained

* |sthefeasibleregion convex?
e Arethe Hessians of the constraints ill-conditioned?
* |sthere arelaxation that is "easy"?



