
Graphs and Network Flows
ISE 411

Lecture 9

Dr. Ted Ralphs

ISE 411 Lecture 9 1

References for Today’s Lecture

• Required reading

– Section 21.2

• References

– AMO Sections 4.5–4.7
– CLRS Section 24.3

1

ISE 411 Lecture 9 2

Solving SPP with Non-Negative Arc Lengths

• When there are cycles, the situation is a bit more complex.

• Dijkstra’s Algorithm generalizes the algorithm from Lecture 7 for the
acyclic case.

• The difference is the order in which the nodes are examined.

• As before, nodes are divided into two groups

– temporarily labeled
– permanently labeled

• In order to produce the shortest paths tree, we keep track of the
predecessor node each time a label is updated.

• Basic Idea: Fan out from source and permanently label nodes in order of
distance from the source.

2

ISE 411 Lecture 9 3

Dijkstra’s Algorithm

Input: An network G = (N,A) and a vector of arc lengths c ∈ ZA
+

Output: d(i) is the length of a shortest path from node s to node i and
pred(i) is the immediate predecessor of i in an associated shortest paths
tree.
S := ∅
S̄ := N
d(i)←∞∀i ∈ N
d(s)← 0 and pred(s)← 0
while |S| < n do

let i ∈ S̄ be the node for which d(i) = min{d(j) : j ∈ S̄}
S ← S ∪ {i}
S̄ ← S̄ \ {i}
for (i, j) ∈ A(i) do
if d(j) > d(i) + cij then
d(j)← d(i) + cij and pred(j)← i

end if
end for

end while

3

ISE 411 Lecture 9 4

Example of Dijkstra’s Algorithm

30

18 21

38

20

22 9

1 2 3 4 5 6 7 8 9

4

ISE 411 Lecture 9 5

Proof of Correctness

Claim 1. At the end of any iteration the following inductive hypotheses
hold:

1. The distance label d(i) is optimal for any node i in the set S.

2. The distance label d(j) for any node j ∈ S̄ is the length of the shortest
path from the source to j such that all internal path nodes are in S.

5

ISE 411 Lecture 9 6

Proof Strategy

• Show that statements 1 and 2 are true after the first iteration.

• Assume that they are true after iteration i− 1 and prove that they hold
after iteration i.

• (Assume iteration i moves node i from S̄ to S.)

6

ISE 411 Lecture 9 7

Running Time of Dijkstra’s Algorithm

• Note that Dijkstra’s Algorithm is a graph search procedure.

• It is very similar to Prim’s Algorithm.

• At each step, we need to update some node labels and then be able to
determine the node with the minimum label.

• What is the running time for a naive implementation?

7

ISE 411 Lecture 9 8

Dial’s Implementation

• Node selection is bottleneck operation

• Maintain distances in sorted fashion using following property

Property 1. [4.5] The distance labels that Dijkstra’s Algorithm
designates as permanent are non-decreasing.

• Create nC + 1 buckets numbered 0, 1, · · · , nC + 1 and store all nodes
with temporary distance label k in bucket k

• Reduce number of buckets to C + 1 using following property

Property 2. [4.6] If d(i) is the distance label designated as permanent
at the beginning of an iteration, then at the end of an iteration d(j) ≤
d(i) + C for each finitely labeled node j ∈ S̄.

• Algorithm runs in O(m+ nC) time

8

ISE 411 Lecture 9 9

Implementation with Priority Queues

• To get a strongly polynomial time algorithm, we must use a more general
data structure for maintaining a priority queue.

• For a given order set H, this data structure should support the operations

– push(item, value) (to add and change value of an item)
– peek()

– pop()

9

ISE 411 Lecture 9 10

Binary Heaps

• A binary heap is a balanced binary tree with additional structure that
allows it to function efficiently as a priority queue.

• The additional structure needed to support these operations is that each
node has a higher priority than either of its children.

• Balanced binary trees can be stored very efficiently in a single array.

– The root is stored in position 0.
– The children of the node in position i are stored in positions 2i + 1

and 2i+ 2.
– This determines a unique storage location for every node in the tree

and makes it easy to find a node’s parent and children.
– Using an array, basic operations can be performed very efficiently.

10

ISE 411 Lecture 9 11

Creating the Heap

• Any node whose priority is higher than either of its children is said to
satisfy the heap property.

• Consider a tree in which all nodes except for the root have the heap
property.

• We can easily transform this into a tree in which every node has the
heap property (how?).

• This operation is called heapify().

• By calling heapify() on each node, starting at the lowest level and
working upward, we can transform an unordered binary tree into a heap.

• This is how we create the initial heap.

• Note that this step is unnecessary for implementing Dijkstra’s. Why?

11

ISE 411 Lecture 9 12

Operations on a Heap

• The node with the highest priority is always the root.

• To change the priority of a node

• To insert a node

• To delete a node

• What are the running times of these operations?

12

ISE 411 Lecture 9 13

Analyzing Diskstra’s with a Binary Heap

13

ISE 411 Lecture 9 14

Running Times of Other Implementations

d-Heap: O(m logd n+ nd logd n) (d = max{2, ⌈m/n⌉})

Fibonacci Heap: O(m+n log n) (best strongly polynomial time algorithm)

Johnson’s: O(m log logC)

Radix Heap: O(m+ n log(nC))

Fibonacci Radix: O(m+ n
√
logC)

14

