Graphs and Network Flows ISE 411

Lecture 8

Dr. Ted Ralphs

Why study shortest path problems?

- They arise frequently in practice and as subproblems in higher-level algorithms.
- They are easy to solve efficiently.
- They capture most essential features of the broader class of network flow models.
- SPP is a good starting point for introducing ideas for designing algorithms with good worst-case performance.

Example: The Kevin Bacon Number

- Start with any actor or actress who has been in a movie and connect him or her to Kevin Bacon in the smallest number of links.
- Two people are linked if they have appeared in a movie together.
- Play on the web! http://OracleOfBacon.org.
- Example
 - Alfred Hitchcock and Orson Welles: $Show \ Business \ At \ War \ (1943)$
 - Orson Welles and Jack Nicholson: A Safe Place (1971)
 - Jack Nicholson and Kevin Bacon: $A \ Few \ Good \ Men \ (1992)$
- How is the shortest path problem related to the Oracle of Kevin Bacon?

Formal Definition

Definition 1. Given a directed network G = (N, A) with an arc length c_{ij} associated with each arc $(i, j) \in A$ and a distinguished node s, the shortest path problem is to determine a shortest length directed path from node s to every node $i \in N - \{s\}$.

- The length of a directed path is the sum of the lengths of arcs in the path.
- A(i) is the arc adjacency list of node i
- $C = \max\{c_{ij} : (i,j) \in A\}$

Variations

- Single-Source: from one node to every other
 - Non-negative arc lengths
 - Arbitrary arc lengths
- All Pairs: from every node to every other
- Maximum Capacity
- Maximum Reliability

• • •

Assumptions

- The network is directed.
- All arc lengths are integers.
- \bullet There is a directed path from node s to every other node in the network.
- There are no directed cycles with negative length.

Shortest Paths Tree

Associated with any shortest path problem is a directed out-tree called the shortest path tree rooted at node s with the property that the unique path from node s to any node is a shortest path to that node.

Property 1. If the path $s = i_1 - i_2 - \cdots - i_h = k$ is a shortest path from node s to node k, then for every $q = 2, 3, \dots, h-1$, the subpath $s = i_1 - i_2 - \cdots - i_q$ is a shortest path from the source node to node i_q .

Property 2. Let the vector d represent the shortest path distances. Then a directed path P from the source node to node k is a shortest path if and only if $d(j) = d(i) + c_{ij}$ for every arc $(i, j) \in P$.

From these two properties, we can prove that a shortest paths tree always exists.

Application (Ahuja et al., 4.13)

- The owner of a home for senior citizens has decided to offer shuttle bus service for her residents to downtown Bethlehem.
- She has interviewed a number of potential drivers whose available hours and wages are shown in the table.
- She needs to ensure that at least one driver is on duty for each hour between 9 A.M. and 5 P.M., and she would like to pay as little as possible.
- How should we solve her scheduling problem?

Duty Hours	9 - 1	9 - 11	12 - 3	12 - 5	2 - 5	1 - 4	4 - 5
Cost	30	18	21	38	20	22	9

Shortest Path Algorithms

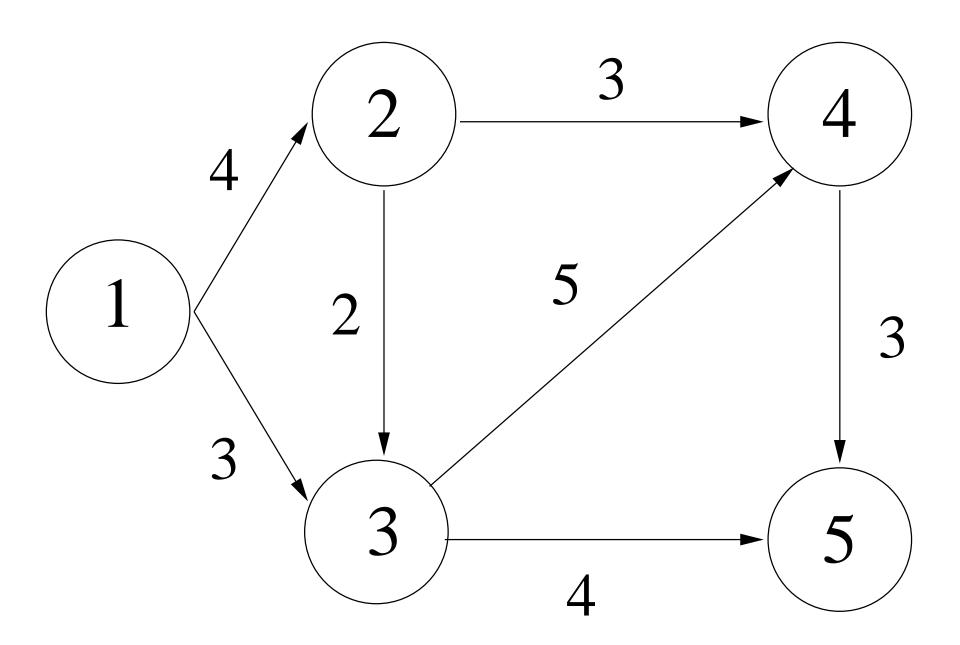
- Label Setting (Chapter 4)
 - one label becomes permanent during each iteration
 - acyclic with arbitrary arc lengths OR non-negative arc lengths
- Label Correcting (Chapter 5)
 - all labels are temporary until last iteration
 - more general graphs including negative arc lengths
- Both are iterative; they differ in label update procedure and convergence procedure.

Solving SPP in Acyclic Networks

Reaching Algorithm

```
Input: An acyclic network G = (N, A) and a vector of arc lengths c \in \mathbb{Z}^A
Output: d(i) is the length from of a shortest path from node s to node i
  d(s) \leftarrow 0
  for i \in N - \{s\} do
     d(i) \leftarrow \infty
  end for
  Determine a topological order order [] of the nodes
  for k=1 to n do
     i \leftarrow \operatorname{order}[k]
     for (i,j) \in A(i) do
        if d(j) > d(i) + c_{ij} then
          d(j) \leftarrow d(i) + c_{ij}
        end if
     end for
  end for
```

Example of Reaching Algorithm



Proof of Correctness for Reaching Algorithm

Claim: When the algorithm examines a node, its distance label is optimal.

Proof

Base Case: When we examine node 1, d(1) = 0 is correct. When we examine node 2, $d(2) = d(1) + c_{12}$ is correct because only node 1 can be inbound to node 2 (topological ordering).

Induction: Suppose that the algorithm has examined nodes $1, 2, \dots, k$ and the distance labels are correct. Show that the distance label for node k+1 is correct.

Let the shortest path from s to k+1 be $s-i_1-i_2-\cdots-i_h-i_k+1$.