
Graphs and Network Flows
ISE 411

Lecture 7

Dr. Ted Ralphs

ISE 411 Lecture 7 1

References for Today’s Lecture

• Required reading

– Chapter 20

• References

– AMO Chapter 13
– CLRS Chapter 23

1

ISE 411 Lecture 7 2

Minimum Spanning Trees

• Optimality Conditions

• Kruskal’s Algorithm

• Prim’s Algorithm

2

ISE 411 Lecture 7 3

Combinatorial Optimization

• A combinatorial optimization problem consists of

– a ground set of elements E,
– an associated set F of subsets of E called the feasible subsets.
– A cost vector RE.

• The cost c(S) of a feasible subset is
∑

s∈S cs.

• The goal is to find a subset of minimum cost.

3

ISE 411 Lecture 7 4

Minimum Spanning Trees

• Recall that a spanning tree T of G is a connected acyclic subgraph that
spans all the nodes of G.

• The total cost of a spanning tree is the sum of the costs of the arcs in
the tree.

• Given an undirected graph G = (N,A) with n nodes and m arcs and with
a length or cost cij associated with each arc (i, j) ∈ A, the minimum
spanning tree problem is to find a spanning tree with the smallest total
cost (length).

• This is a combinatorial optimization problem.

4

ISE 411 Lecture 7 5

Optimality Conditions

• Cut Optimality Conditions

• Path Optimality Conditions

Properties of a Spanning Tree

• For every non-tree arc (k, l), a spanning tree T contains a unique path
from node k to node l. The arc (k, l) together with the unique path
defines a cycle.

• If we delete any tree arc (i, j) from a spanning tree, we partition the
node set into two subsets, which define a cut in the graph.

5

ISE 411 Lecture 7 6

Cut Optimality Conditions

Theorem 1. [13.1] A spanning tree T ∗ is a minimum spanning tree if and
only if for every tree arc (i, j) ∈ T ∗, cij ≤ ckl for every arc (k, l) contained
in the cut formed by deleting arc (i, j) from T ∗.

1

2

3

4

5

6

4

10

12

11
10

7

2

5

6

6

ISE 411 Lecture 7 7

Proof of Theorem 13.1

1. Show if T ∗ is a MST, then T ∗ must satisfy the Cut Optimality Conditions.

2. Show if any tree T ∗ satisfies the Cut Optimality Conditions, then T ∗ is
a MST.

7

ISE 411 Lecture 7 8

Path Optimality Conditions

Theorem 2. [13.3] A spanning tree T ∗ is a MST if and only if for every
non-tree arc (k, l) of G, cij ≤ ckl for every arc (i, j) contained in the path
in T ∗ connecting nodes k and l.

1

2

3

4

5

6

4

10

12

11
10

7

2

5

6

8

ISE 411 Lecture 7 9

Proof of Theorem 13.3

1. Show if T ∗ is a MST, then T ∗ satisfies the Path Optimality Conditions.

2. Show if for every non-tree arc (k, l) of G cij ≤ ckl for every arc (i, j)
contained in the path in T ∗ connecting nodes k and l, then T ∗ is a MST.

9

ISE 411 Lecture 7 10

Algorithm Based on Cut Optimality

• Prim’s algorithm is motivated by the cut optimality conditions.

• We build up the tree one edge at a time as one connected component.

• In each iteration, we will connect one more node to the current tree.

• We do this by adding the edge that is the minimum length edge across
the cut induced by the current set of connected nodes.

• Why does this guarantee optimality?

• How do we do this?

10

ISE 411 Lecture 7 11

Prim’s Algorithm

algorithm Prim
T = ∅
S = {1}; S̄ = N − {1}
while (|S| < n) do
find arc (i, j) in [S, S̄] with minimum cost
T = T ∪ {(i, j)}
S = S ∪ {j}; S̄ = S̄ − {j}

11

ISE 411 Lecture 7 12

Complexity

• Number of iterations?

• Dominant step of each iteration?

12

ISE 411 Lecture 7 13

Prim’s Algorithm

• For each node j ∈ S̄

– d(j) = min cost of arcs in the cut incident to a node j ̸∈ S̄
– d(j) = min{cij : (i, j) ∈ [S, S̄]}
– pred(j) = i such that cij = min{cij : (i, j) ∈ [S, S̄].

• To find min cost arc, compute min{d(j) : j ∈ S̄}.

• Suppose ĵ is the min, then (pred(ĵ),j) is min cost arc.

• Move ĵ to S and update distance and predecessor labels for nodes
adjacent to ĵ.

13

ISE 411 Lecture 7 14

Running Time of Prim’s Algorithm

• Note that Prim’s Algorithm is a graph search procedure.

• However, the procedure for determining the search order is more complex
than previous ones.

• At each step, we need to update some node labels and then be able to
determine the node with the minimum label.

• The key to implementing the procedure is an efficient data structure.

• What is the running time for a naive implementation?

14

ISE 411 Lecture 7 15

Implementation with Priority Queues

• The running time depends critically on how keep track of the minimum
label as the algorithm progresses.

• To get a strongly polynomial time algorithm, we must use a more general
data structure for maintaining a priority queue.

• For a given order set H, this data structure should support the operations

– push(item, value) (to add and change value of an item)
– peek()

– pop()

15

ISE 411 Lecture 7 16

Binary Heaps

• A binary heap is a balanced binary tree with additional structure that
allows it to function efficiently as a priority queue.

• The additional structure needed to support these operations is that each
node has a higher priority than either of its children.

• Balanced binary trees can be stored very efficiently in a single array.

– The root is stored in position 0.
– The children of the node in position i are stored in positions 2i + 1

and 2i+ 2.
– This determines a unique storage location for every node in the tree

and makes it easy to find a node’s parent and children.
– Using an array, basic operations can be performed very efficiently.

16

ISE 411 Lecture 7 17

Creating the Heap

• Any node whose priority is higher than either of its children is said to
satisfy the heap property.

• Consider a tree in which all nodes except for the root have the heap
property.

• We can easily transform this into a tree in which every node has the
heap property (how?).

• This operation is called heapify().

• By calling heapify() on each node, starting at the lowest level and
working upward, we can transform an unordered binary tree into a heap.

• This is how we create the initial heap.

• Note that this step is unnecessary for implementing Dijkstra’s. Why?

17

ISE 411 Lecture 7 18

Operations on a Heap

• The node with the highest priority is always the root.

• To change the priority of a node

• To insert a node

• To delete a node

• What are the running times of these operations?

18

ISE 411 Lecture 7 19

Analyzing Prim’s with a Binary Heap

19

ISE 411 Lecture 7 20

Algorithm Based on Path Optimality

• Kruskal’s algorithm motivated by path optimality conditions.

• We build up the tree one edge at a time, but this time we build multiple
components simultaneously.

• In each step, we will add the minimum edge that does not form a cycle
with the edges already added.

• Why does this guarantee optimality?

• How do we implement it?

20

ISE 411 Lecture 7 21

Kruskal’s Algorithm

algorithm Kruskal
sort edges in non-decreasing order of length
LIST := ∅
while (|LIST| < |N | − 1 and ∃ unexamined edges) do
e := unexamined edge with minimum length
if adding e to LIST does not create a cycle
add e to LIST

else discard e

21

ISE 411 Lecture 7 22

Kruskal’s Algorithm: Complexity

• The algorithm has two steps.

– Sorting the edge list: O(m logm) = O(m log n)
– Building the tree: ??

• To determine which edges we are allowed to add in each step requires a
data structure for storing connected components.

• The data structure must support two operations.

– find(i, j): Are i and j in the same component?
– union(i, j): Merge the components i and j.

22

ISE 411 Lecture 7 23

Quick Find Implementation of Union-Find

• The simplest implementation involves an array of length n.

• We will maintain the array such that two items are in the same subset if
and only if the array entries are equal.

• This makes the find(i, j) constant time, so we call this
implementation quick find.

• How do we implement union(i, j)?

• What is the running time?

• Note that this could also be implemented using linked lists.

23

ISE 411 Lecture 7 24

Quick Union Implementation of Union-Find

• To speed up the union operation, we maintain the array in a different
fashion.

• We will consider the ith entry of the array to be a pointer to another
item.

• To perform find(i, j),

– Follow the pointers from nodes i and j until reaching a node that
points to itself, called the representative

– If the same representative is reached from both nodes i and j, then
they are in the same subset.

• To perform union(i, j), perform the find operation and then point the
representative for i to the representative for j.

• What is the performance now?

24

ISE 411 Lecture 7 25

Weighted Quick Union

• Note that the quick union algorithm essentially builds a tree out of the
nodes in each component, with the root begin the representative.

• As in a heap, the running time of the find operation depends on the
depth of the trees.

• Each union operation essentially connects two trees together by pointing
the root of one tree to the root of the other.

• One way to limit the depth of the tree is to always point the smaller tree
to the larger one.

• This ensures that each find takes less than log n steps.

• Note that we must now keep track of the number of nodes in each tree,
but that’s easy to do.

• Another approach is to keep track of the height of each tree and always
point the shorter tree to the taller one.

25

ISE 411 Lecture 7 26

Path Compression

• Ideally, we would like each item to point directly to the representative of
its subset.

• One possibility is to simply keep track of all the nodes encountered in
the path to the root.

• After reaching the root, set all the nodes on the path to point to the
root.

• This is easy to implement recursively and doesn’t change the asymptotic
running time.

• An easier method to implement is compression by halving, which is
setting each node to point to its grandparent.

• Combining weighted quick union with path compression yields a total
running time for connected components of approximately O(m).

26

ISE 411 Lecture 7 27

Analyzing Kruskal’s with Optimized Union-Find

27

