
Graphs and Network Flows
IE411

Lecture 5

Dr. Ted Ralphs



IE411 Lecture 5 1

References for Today’s Lecture

• Required reading

– Sections 18.1–18.6, 19.2, 19.6, 19.8

• References

– AMO Section 3.4
– CLRS Chapter 22

1



IE411 Lecture 5 2

Search Algorithms

• Search algorithms are fundamental techniques applied to solve a wide
range of optimization problems.

• Search algorithms attempt to find all the nodes in a network satisfying a
particular property.

• Examples

– Find nodes that are reachable by directed paths from a source node.
– Find nodes that can reach a specific node along directed paths
– Identify the connected components of a network
– Identify directed cycles in network

• Let us again consider undirected graphs to start.

• We will first generalize the algorithm from last time for finding a simple
path in a graph.

2



IE411 Lecture 5 3

Labeling a Component

• The set of all nodes connected to a given node by a path is called a
component.

• How easy is it to determine all of the nodes in the same component as a
given node?

def DFS(G, v, pred, component_num = 0):

G.set_node_attr(v, ’component’, component_num)

for n in G.get_neighbors(v):

if G.get_node_attr(n, ’component’) == None

DFS(G, n, pred, component_num)

return

3



IE411 Lecture 5 4

Depth-first Search

• The algorithm we have just seen is known as depth-first search.

• We will see why it is called this shortly.

• Associated with the search is a search tree that can be used to visualize
the algorithm.

• At the time a node n is discovered, we can record v as its predecesor.

• The set of edges consisting of each node and its predecessor forms a tree
rooted at v.

– We call the edges in the tree tree edges.
– The remaining edges connect a vertex with an ancestor in the tree

that is not its parent and are called back edges.

• Why must every edge be either a tree edge or a back edge?

4



IE411 Lecture 5 5

Complexity of Depth-first Search

• How do we analyze a DFS algorithm?

• How many recursive calls are there?

• How does the graph data structure affect the running time?

– Adjacency matrix
– Adjacency list

5



IE411 Lecture 5 6

Node Ordering

• The nodes can be ordered in two ways during the depth-first search.

– Preorder: The order in which the nodes are first discovered (discovery
time).

– Postorder: The order in which the nodes finished (the recursive calls
on all neighbors return).

• These orders will be referred to in various algorithms we’ll study.

6



IE411 Lecture 5 7

Labeling All Components

• To label all components, we loop through all the nodes in the graph and
start labeling the component of any node we find that has not already
been labeled.

def label_component(G):

component_num = 0

for n in G.get_node_list():

G.set_node_attr(n, ’component’, None)

for n in G.get_node_list():

if G.get_node_attr(n, ’component’) is None:

DFS(G, n, component_num)

component_num += 1

return

• What is the complexity of this algorithm?

7



IE411 Lecture 5 8

Depth-first Search in Directed Graphs

• DFS in a directed graph is very similar to DFS in an undirected graph.

• The main difference is that each arc is only encountered once during the
search.

• Also, note that the notion of a component is different here.

def DFS(G, v):

G.set_node_attr(v, ’color’, ’green’)

for n in G.get_neighbors(v):

if G.get_node_attr(n, ’color’) == ’red’

DFS(G, n, pred)

return

for n in G.get_node_list():

G.set_node_attr(n, ’color’, ’red’)

DFS(G, v)

• What nodes will be colored green after DFS is called?

8



IE411 Lecture 5 9

Depth-first Search in Directed Graphs

• As with undirected graphs, DFS in directed graphs produces a search
tree that is directed out from the initial node (an out tree).

• At the time a node n is discovered, we record v as its predecesor.

• The set of arcss consisting of each node and its predecessor forms a tree
rooted at v.

– We call the arcs in the tree tree arcs.
– The remaining arcs can be either
∗ Back arcs: Those connecting a vertex to an ancestor
∗ Down arcs: Those connecting a vertex to a descendant
∗ Cross arcs: Those connecting a vertex to a vertex that is neither a

descendant nor an ancestor.

9



IE411 Lecture 5 10

Node Order and Arc Type

• Also as with undirected graphs, we can order the nodes in two different
ways: postorder and preorder.

• As before, we refer to the preorder number of a node as its discovery
time and the postorder number as its finishing time.

• We can identify the type of an arc as follows.

– It is a back arc if it leads to a node with a later finishing time.
– Otherwise, it is a cross arc if it leads to a node with an earlier discovery

time and a down arc if it leads to a node with a later discovery time.

10



IE411 Lecture 5 11

Problems Solvable With DFS (Undirected Graphs)

• Cycle Detection: The discovery of a back edge indicates the existence of
a cycle.

• Simple Path

• Connectivity

• Component Labeling

• Spanning Forest

• Two-colorability, bipartiteness, odd cycle

11



IE411 Lecture 5 12

Directed Acyclic Graphs

• A directed acyclic graph (DAG) is a directed graph containing no directed
cycles.

• DAGs can be interpreted as specifying precedence relations or a (partial)
order on the nodes.

• Directed cycles can be detected in directed graphs by using DFS.

• A graph is a DAG if and only if it contains no back arc.

12



IE411 Lecture 5 13

Topological Ordering

• In a DAG, we interpret the arcs as representing precedence constraints.

• In other words, an arc (i, j) represents the constraint that node i must
come before node j.

• Given a graph G = (N,A) with the nodes labeled with distinct numbers
1 through n, let order(i) be the label of node i.

• Then, this labeling is a topological ordering of the nodes if for every arc
(i, j) ∈ A, order(i) < order(j).

• Can all graphs be topologically ordered?

13



IE411 Lecture 5 14

Topological Ordering

The following algorithm will detect presence of a directed cycle or produce
a topological ordering of the nodes.

Input: Directed acyclic graph G = (N,A)
Output: The array order is a topological ordering of N .
count ← 1
while {v ∈ N : I(v) = 0} 6= ∅ do

let v be any vertex with I(v) = 0
order[v] ← count

count ← count + 1

delete v and all outgoing arcs from G
end while
if N = ∅ then

return success

else
report failure

end if

Can this be implemented efficiently?

14



IE411 Lecture 5 15

Topological Ordering Algorithm

• Correctness of algorithm

1. If G has a cycle...
2. If G is acyclic...

• Running time of the algorithm

15



IE411 Lecture 5 16

Topological Ordering with DFS

• How might we topologically order a graph using DFS?

16



IE411 Lecture 5 17

Connectivity in Directed Graphs

• Determining connectivity in directed graphs is more involved than in
undirected graphs.

• Although it is not obvious how to do it, we can find the strongly
connected components of a graph in linear time.

– Use DFS to compute the finishing time for each vertex
– Compute the reverse (transpose) of the graph.
– Do DFS on the transpose, but explore each vertex in decreasing order

of finish time.

• This can be implemented very efficiently.

17


