Graphs and Network Flows IE411

Lecture 5

Dr. Ted Ralphs

References for Today's Lecture

- Required reading
 - Sections 18.1–18.6, 19.2, 19.6, 19.8
- References
 - AMO Section 3.4
 - CLRS Chapter 22

Search Algorithms

• Search algorithms are fundamental techniques applied to solve a wide range of optimization problems.

 Search algorithms attempt to find all the nodes in a network satisfying a particular property.

Examples

- Find nodes that are reachable by directed paths from a source node.
- Find nodes that can reach a specific node along directed paths
- Identify the connected components of a network
- Identify directed cycles in network
- Let us again consider undirected graphs to start.
- We will first generalize the algorithm from last time for finding a simple path in a graph.

Labeling a Component

- The set of all nodes connected to a given node by a path is called a *component*.
- How easy is it to determine all of the nodes in the same component as a given node?

Depth-first Search

- The algorithm we have just seen is known as *depth-first search*.
- We will see why it is called this shortly.
- Associated with the search is a search tree that can be used to visualize the algorithm.
- ullet At the time a node n is discovered, we can record v as its predecesor.
- ullet The set of edges consisting of each node and its predecessor forms a tree rooted at v.
 - We call the edges in the tree tree edges.
 - The remaining edges connect a vertex with an ancestor in the tree that is not its parent and are called back edges.
- Why must every edge be either a tree edge or a back edge?

Complexity of Depth-first Search

- How do we analyze a DFS algorithm?
- How many recursive calls are there?
- How does the graph data structure affect the running time?
 - Adjacency matrix
 - Adjacency list

Node Ordering

- The nodes can be ordered in two ways during the depth-first search.
 - Preorder: The order in which the nodes are first discovered (discovery time).
 - Postorder: The order in which the nodes finished (the recursive calls on all neighbors return).
- These orders will be referred to in various algorithms we'll study.

Labeling All Components

 To label all components, we loop through all the nodes in the graph and start labeling the component of any node we find that has not already been labeled.

```
def label_component(G):
    component_num = 0
    for n in G.get_node_list():
        G.set_node_attr(n, 'component', None)
    for n in G.get_node_list():
        if G.get_node_attr(n, 'component') is None:
            DFS(G, n, component_num)
        component_num += 1
    return
```

What is the complexity of this algorithm?

Depth-first Search in Directed Graphs

- DFS in a directed graph is very similar to DFS in an undirected graph.
- The main difference is that each arc is only encountered once during the search.
- Also, note that the notion of a component is different here.

What nodes will be colored green after DFS is called?

Depth-first Search in Directed Graphs

 As with undirected graphs, DFS in directed graphs produces a search tree that is directed out from the initial node (an out tree).

- \bullet At the time a node n is discovered, we record v as its predecesor.
- ullet The set of arcss consisting of each node and its predecessor forms a tree rooted at v.
 - We call the arcs in the tree tree arcs.
 - The remaining arcs can be either
 - * Back arcs: Those connecting a vertex to an ancestor
 - * <u>Down arcs</u>: Those connecting a vertex to a descendant
 - * Cross arcs: Those connecting a vertex to a vertex that is neither a descendant nor an ancestor.

Node Order and Arc Type

- Also as with undirected graphs, we can order the nodes in two different ways: postorder and preorder.
- As before, we refer to the preorder number of a node as its discovery time and the postorder number as its finishing time.
- We can identify the type of an arc as follows.
 - It is a back arc if it leads to a node with a later finishing time.
 - Otherwise, it is a cross arc if it leads to a node with an earlier discovery time and a down arc if it leads to a node with a later discovery time.

Problems Solvable With DFS (Undirected Graphs)

• Cycle Detection: The discovery of a back edge indicates the existence of a cycle.

- Simple Path
- Connectivity
- Component Labeling
- Spanning Forest
- Two-colorability, bipartiteness, odd cycle

Directed Acyclic Graphs

- A *directed acyclic graph* (DAG) is a directed graph containing no directed cycles.
- DAGs can be interpreted as specifying precedence relations or a (partial) order on the nodes.
- Directed cycles can be detected in directed graphs by using DFS.
- A graph is a DAG if and only if it contains no back arc.

Topological Ordering

- In a DAG, we interpret the arcs as representing *precedence constraints*.
- In other words, an arc (i, j) represents the constraint that node i must come before node j.
- Given a graph G = (N, A) with the nodes labeled with distinct numbers 1 through n, let order(i) be the label of node i.
- Then, this labeling is a *topological ordering* of the nodes if for every arc $(i, j) \in A$, order(i) < order(j).
- Can all graphs be topologically ordered?

Topological Ordering

The following algorithm will detect presence of a directed cycle or produce a topological ordering of the nodes.

```
Input: Directed acyclic graph G = (N, A)
Output: The array order is a topological ordering of N.
  count \leftarrow 1
  while \{v \in N : I(v) = 0\} \neq \emptyset do
     let v be any vertex with I(v) = 0
     order[v] \leftarrow count
     count \leftarrow count + 1
     delete v and all outgoing arcs from G
  end while
  if N = \emptyset then
     return success
  else
     report failure
  end if
```

Can this be implemented efficiently?

Topological Ordering Algorithm

- Correctness of algorithm
 - 1. If G has a cycle...
 - 2. If G is acyclic...
- Running time of the algorithm

Topological Ordering with DFS

• How might we topologically order a graph using DFS?

Connectivity in Directed Graphs

- Determining connectivity in directed graphs is more involved than in undirected graphs.
- Although it is not obvious how to do it, we can find the strongly connected components of a graph in linear time.
 - Use DFS to compute the finishing time for each vertex
 - Compute the reverse (transpose) of the graph.
 - Do DFS on the transpose, but explore each vertex in decreasing order of finish time.
- This can be implemented very efficiently.