Graphs and Network Flows
IE411

Lecture 4

Dr. Ted Ralphs



|[E411 Lecture 4

References for Today’s Lecture

e Required reading

— Miller and Boxer, Chapter 1

e References

— AMO Sections 3.2
— CLRS Sections 1.1-1.3



|[E411 Lecture 4 2

Algorithms

e al-go-rithm!

1. any systematic method of solving a certain kind of problem
2. a predetermined set of instructions for solving a specific problem in a
limited number of steps

e The concept of an algorithm is not new but formal study of efficiency is
relatively new.

IWester's New World Dictionary



IE411 Lecture 4 3

Introduction to Computational Complexity

e What is the goal of computational complexity theory?

— To provide a method of comparing the difficulty of two different
problems.

— To provide a method of comparing the efficiency of two different
algorithms for the same problem.

e We would like to be able to rigorously define the meaning of efficient
algorithm.

e Complexity theory is built on a basic set assumptions called the mode/
of computation.

e We will not concern ourselves too much with the details of a particular
model here.

e This topic is addressed in |[E 407.



|[E411 Lecture 4 4

Elementary Operations

e |n order to analyze the number of steps necessary to execute an algorithm,
we have to say what we mean by a “step.”

e To define this precisely is tedious and beyond the scope of this course.
e A precise definition depends on the exact hardware being used.

e Our analysis will assume a very simple model of a computer in which the
following operations take one step.

— arithmetic (addition, subtraction, multiplication, division)

— data movement (read from memory, store in memory, copy)
— comparison

— control (function calls, goto commands)

e This is a very idealized model, but it works in practice.

e We will sometimes need to simplify the model even further.



|[E411 Lecture 4 5

Problems, Instances, and Algorithms

A problem P is a mapping of a set of inputs to specified outputs.
An instance is a problem along with a particular input.

An algorithm is a procedure for computing the output expected from a
given input.

An algorithm solves a problem P if that algorithm produces the expected
output for any input.

Example: Traveling Salesman Problem

— Given an undirected graph G = (N, A) and non-negative arc lengths
d;; for all (¢,7) € A, find a cycle that visits all nodes exactly once and
is of minimum total length.

— How do we specify an instance?



|[E411 Lecture 4 6

Computational Complexity: What is the Objective?

e Complexity analysis is aimed at answering two types of questions.

— How hard is a given problem?
— How efficient is a given algorithm for a given problem?

e Our measure of efficiency will be running time, defined as either

— The actual wall clock time required to execute the algorithm on a
computer (problematic) or
— the number of elementary operations required (more on this later).

e The running time may differ by instance, algorithm, and computing
platform.

e How should we measure the performance so that we can select the “best”
algorithm from among several?



|[E411 Lecture 4 7

What Do We Measure?

Three methods of analysis:

e Empirical analysis

— Try to determine how algorithms behave in practice on real
computational platforms under load in real-world conditions.

e Average-case analysis

— Try to determine the expected running time an algorithm will take
analytically.

e \Worst-case analysis

— Provide an upper bound on the running time of an algorithm for any
Instance in a given set.



|[E411 Lecture 4

Drawbacks of Three Approaches

Empirical

Depends on programming language, compiler, etc.
Time consuming and expensive
Often inconclusive

Average-Case

Depends on probability distribution

Difficult to determine appropriate distribution
Intricate mathematical analysis

No information on distribution of outcomes

Worst-Case

s e =y =

Influenced by pathological instances




|[E411 Lecture 4 9

The Size of a Problem

e Obviously, the time needed to solve a problem instance with a given
algorithm depends on certain properties of the instance.

e The most easily identifiable such property is the size of the instance.
e However, it is again problematic to define what we mean by “size”.

e |In many cases, the size of an instance can be taken to be the number of
Input parameters.

e For a linear program, this would be roughly determined by the number
of variables and constraints.

e The running time of certain algorithms, however, depends explicitly on
the magnitude of the input data.



|[E411 Lecture 4 10

Measuring the Size of an Instance

e Formally, we consider the size of the input to be the amount of memory
it takes to store a complete description of the instance in memory.

e This is still not a clear definition because it depends on our representation
of the data (the alphabet).

e Because computers store numbers in binary format, we use the size of a
binary encoding (a two symbol alphabet) as our standard measure.

e In other words, the size of a number [ is the number of bits required to
represent it in binary, i.e., log, .

e As long as the magnitude of the input data is bounded, this is equivalent
to considering the number of input parameters.

e In practice, the magnitude of the input data is wsually, but not always,
bounded.



|[E411 Lecture 4 11

More on the Size of a Problem

e Note that many combinatorial problems are defined implicitly, i.e.,
independent of a particular formulation.

e An example of this is the Traveling Salesman Problem.
e The input data for an instance of the TSP may be either

— an explicit a vector of costs for traveling between pairs of locations or
— explicit coordinates of each location, with the costs being implicitly
defined as Euclidean distances.

e Hence, the size of an instance may be either the number of locations or
the number of costs specified between pairs of locations.

e The magnitude of the costs may also affect the size (if this is not
bounded).



|[E411 Lecture 4 12

The Running Time of an Algorithm

e Running time is a measure of efficiency for an algorithm.

e For a given instance of a problem, we can determine (roughly) the time
required to solve it with a given implementation on a given computing
platform.

e Worst-case running time with respect to a given set of instances is the
maximum time required over all instances.

e |In most cases, worst case running time depends primarily on the size of
the instances, as we have defined it.

e Therefore, our measure will typically be the worst-case running time over
all instances of a given size.

e However, we still need a measure of running time that is architecture
independent.

e We will simply count the number of elementary operations required to
perform the algorithm.



|[E411 Lecture 4 13

More on Elementary Operations

e Elementary operations are the basic operation defined earlier.

e In most cases, we will assume that each of these can be performed in
constant time.

e Again, this is a good assumption as long as the size of the numbers
remains “small” as the calculation progresses.

e Generally we will want to ensure that the numbers can be encoded in a
size polynomial in the size of the input.

e This justifies our assumption about constant time operations.

e In some cases, we may have to be very careful about checking this
assumption.



|[E411 Lecture 4 14

Asymptotic Analysis

e So far, we have determined that our measure of running time will be a
function of instance size (a positive integer).

e Determining the exact function is still problematic at best.

e We will only really be interested in approximately how quickly the function
grows “in the limit".

e To determine this, we will use asymptotic analysis.

e We will allow some “sloppiness’ and ignore constants and low order
terms.

e Because of our many simplifying assumptions, the low order terms may
not be accurate anyway.



|[E411 Lecture 4 15

Growth of Functions

Question: Why are we really interested in the theoretical running times
of algorithms?

Answer: To compare different algorithm for solving the same problem.

We are interested in performance for large input sizes.

For this purpose, we need only compare the asymptotic growth rates of
the running times.

— Consider algorithm A with running time given by f and algorithm B
with running time given by g.
— We are interested in knowing

= lim M
b= )

— What are the four possibilities?



|[E411 Lecture 4 16

© Notation

e \We now define the set
O(g) ={f : Je1,c2,n9 > 0 such that c1g(n) < f(n) < cog(n) Vn > ng}

o If f € O(g), then we say that f and g grow at the same rate or that
they are of the same order.

e Note that
f€06(g) = geo(f)
e We also know that if limn%w% — ¢ for some constant ¢, then
f€06(g).

e |f the limit doesn't exist, we don't know.



|[E411 Lecture 4 17

Big-O Notation

e We can similarly define the set

O(g) ={f : de,ng > 0 such that 0 < f(n) < cg(n)¥n > ng}

e If f € O(g), then we say that "f is big-O of ¢" or that g grows at least
as fast as f.

e Note that if f € O(g), then either f € ©(g) or lim,, ]gc(—zg =0
e Some other notation

- [ €Q(g) & g€ O(f).

— [ €olg) & [ €0(g)\ O(g) & limy, o0 L = 0.

g(n)
— few(g) & g€ o(f) & limy 00 di = oo



|[E411 Lecture 4

Example

Let's show that if f(n) = 1(n® + 3n), then f € O(n?).



|[E411 Lecture 4 19

Comparing Functions

The notation we have just defines gives us a way of ordering functions.

We can can interpret

- f€0(g) as “f <g,"
- f€Q(g)as “f >g,)
- Jeolg)as "f <g/”
— f€w(g)as "“f >g,” and
- [€0O(g)as "f=g"

This gives us a method for comparing algorithms based on their running
times.

Note that most of the relational properties of real numbers (transitivity,
reflexivity, symmetry) work here also.

However, not every pair of functions is comparable.



|[E411 Lecture 4 20

Commonly Occurring Functions

e Polynomials: All polynomials f of degree k are in ©(n*).

e Exponentials

— A function in which n appears as an exponent on a constant is an
exponential function, i.e., 2".

. . b
— For all positive constants a and b, lim,, . 7z = 0.
— This means that exponential functions always grow faster than
polynomials.

e Logarithms

— Logarithms of different bases differ only by a constant multiple, so
they all grow at the same rate.

— A polylogarithmic function is a function in O(lg").

— Polylogarithmic functions always grow more slowly than polynomials.

e Factorials: Factorial functions grow more quickly than exponentials, but
are in o(n").




|[E411 Lecture 4 21

Problem Difficulty

e The difficulty of a problem can be judged by the (worst-case) running
time of the best-known algorithm.

e Problems for which there is an algorithm with polynomial running time
(or better) are called polynomially solvable.

e Generally, these problems are considered to be easy.

e There are many interesting problems for which it is not known if there is
a polynomial-time algorithm.

e These problems are generally considered difficult.

e One of the great open questions in mathematics is whether these problems
really are difficult or if we just haven't discovered the right algorithm yet.

e |f you answer this question, you can win a million dollars.

e In this course, we will stick mostly to the easy problems.



|[E411 Lecture 4

22

Example
fore=1---pdo
fory=1---qdo

Cij = @ij + bij

How many elementary operations?



|[E411 Lecture 4 23

Order Relations

e For polynomials, the order relation from the previous slide can be used
to divide the set of functions into equivalence classes.

e We will only be concerned with what equivalence class the function
belongs to.

e Note that class membership is invariant under multiplication by scalars
and addition of “low-order” terms.

e For polynomials, the class is determined by the largest exponent on any
of the variables.

e For example, all functions of the form f(n) = an® + bn + ¢ are ©(n?).



|[E411 Lecture 4 24

Running Time and Complexity

e Running time is a measure of the efficiency of an algorithm.
e Computational complexity is a measure of the difficulty of a problem.

e The computational complexity of a problem is the running time of the
best possible algorithm.

e In most cases, we cannot prove that the best known algorithm is the also
the best possible algorithm.

e We can therefore only provide an upper bound on the computational
complexity in most cases.

e That is why complexity is usually expressed using “big O" notation.

e A case in which we know the exact complexity is comparison-based
sorting, but this is unusual.



|[E411 Lecture 4 25

Aside: Space Complexity

e So far, we have discussed only the amount of computing time required
to solve a problem.

e The amount of memory required to execute a given algorithm may also
be an issue.

e This is known as space complexity.
e \We can analyze space complexity in an analogous manner.

e This will be important in some cases.



|[E411 Lecture 4 26

Polynomial Time Algorithms

e An algorithm is said to be polynomial-time if its worst-case complexity is
bounded by a polynomial function of the input.

e For network problems

— A strongly polynomial algorithm is bounded by a polynomial function
that involves only n and m.

— A weakly polynomial has a running time that is a function of the size
of the whole input, including capacities, etc.

e An algorithm is said to be exponential-time if it worst-case complexity
grows as a function that cannot be bounded by a polynomial function.

e An algorithm is pseudopolynomial-time if its running time is bounded by
a polynomial function of the actual values of the inputs parameters, such
as the largest arc capacity.



|[E411 Lecture 4 27

Example: Finding a Simple Path

e How easy is it to determine if there is a path connecting a given pair of
vertices in a graph?

e For now, let us consider undirected graphs.

e Using the operations in the Graph class, we can answer this question
easily using a recursive algorithm.

def SPath(G, v, w):
if v ==
return true
for n in G.get_node_list():
G.set_node_attr(n, ’color’, ’red’)

v.set_node_attr(’color’) = ’green’
for n in G.get_neighbors(v):
if G.get_node_attr(n, ’color’) == ’red’

G.set_node_attr(n, ’color’, ’green’)
if SPath(G, n, w):
return true
return false



|[E411 Lecture 4 28

Finding a Hamiltonian Path

e Now let's consider finding a path connecting a given pair of vertices that
also visits every other vertex in between (called a Hamiltonian path).

e We can easily modify our previous algorithm to do this by passing an
additional parameter d to track the path length.

e What is the change in running time?

def HPath(G, v, w, d)
if v == w: return d ==
for n in G.get_node_list():
G.set_node_attr(n, ’color’, ’red’)
G.set_node_attr(v, ’color’, ’green’)
for n in G.get_neighbors(v):
if G.get_node_attr(n, ’color’) == ’red’:
G.set_node_attr(n, ’color’, ’green’)
if HPath(G, n, w, d-1):
return true
G.set_node_attr(v, ’color’, ’red’)
return false



|[E411 Lecture 4

29

Worst-Case Complexity of Algorithms

e Dijkstra’s Algorithm O(n?)

e Dial's Algorithm O(m + nC)

o Floyd-Warshall Algorithm O(n?)

e Shortest Augmenting Path Algorithm O(n?m)

e Out-of-Kilter Algorithm O(nU)

e Minimum Mean Cycle-Canceling Algorithm O(n*m?logn)

e Kruskal's Algorithm O(nm)



|[E411 Lecture 4 30

Computational Complexity: Activity!

e Compare the following functions for various values of n.

e Determine which function is larger (according to “big O") and the
approximate value of n after which it is always larger.

— 1000n? and 2™ /100
— n%9%% and (log n)?
— 0.1n?% and 10000n



|[E411 Lecture 4 31

Computational Complexity: Summary

e (Theoretical) objective is to develop polynomial-time algorithms with
smallest possible growth rate

— Why?

e Need to consider empirical performance because not all polynomial-time
algorithms perform better in practice than exponential-time algorithms

— Classic example?
— Explanation?

e Will we always be able to find a polynomial-time algorithm for every
combinatorial optimization problem?



