Graphs and Network Flows IE411

Lecture 4

Dr. Ted Ralphs

References for Today's Lecture

- Required reading
 - Miller and Boxer, Chapter 1
- References
 - AMO Sections 3.2
 - CLRS Sections 1.1-1.3

Algorithms

- al·go·rithm¹
 - 1. any systematic method of solving a certain kind of problem
 - 2. a predetermined set of instructions for solving a specific problem in a limited number of steps
- The concept of an algorithm is not new but formal study of efficiency is relatively new.

¹Wester's New World Dictionary

Introduction to Computational Complexity

- What is the goal of computational complexity theory?
 - To provide a method of comparing the difficulty of two different problems.
 - To provide a method of comparing the efficiency of two different algorithms for the same problem.
- We would like to be able to rigorously define the meaning of *efficient* algorithm.
- Complexity theory is built on a basic set assumptions called the *model* of computation.
- We will not concern ourselves too much with the details of a particular model here.
- This topic is addressed in IE 407.

Elementary Operations

- In order to analyze the number of steps necessary to execute an algorithm, we have to say what we mean by a "step."
- To define this precisely is tedious and beyond the scope of this course.
- A precise definition depends on the exact hardware being used.
- Our analysis will assume a very simple model of a computer in which the following operations take one step.
 - arithmetic (addition, subtraction, multiplication, division)
 - data movement (read from memory, store in memory, copy)
 - comparison
 - control (function calls, goto commands)
- This is a very idealized model, but it works in practice.
- We will sometimes need to simplify the model even further.

Problems, Instances, and Algorithms

- A problem P is a mapping of a set of inputs to specified outputs.
- An *instance* is a problem along with a particular input.
- An algorithm is a procedure for computing the output expected from a given input.
- An algorithm solves a problem P if that algorithm produces the expected output for any input.
- Example: Traveling Salesman Problem
 - Given an undirected graph G = (N, A) and non-negative arc lengths d_{ij} for all $(i, j) \in A$, find a cycle that visits all nodes exactly once and is of minimum total length.
 - How do we specify an instance?

Computational Complexity: What is the Objective?

- Complexity analysis is aimed at answering two types of questions.
 - How hard is a given problem?
 - How efficient is a given algorithm for a given problem?
- Our measure of efficiency will be *running time*, defined as either
 - The actual wall clock time required to execute the algorithm on a computer (problematic) or
 - the number of elementary operations required (more on this later).
- The running time may differ by instance, algorithm, and computing platform.
- How should we measure the performance so that we can select the "best" algorithm from among several?

What Do We Measure?

Three methods of analysis:

- Empirical analysis
 - Try to determine how algorithms behave in practice on real computational platforms under load in real-world conditions.
- Average-case analysis
 - Try to determine the expected running time an algorithm will take analytically.
- Worst-case analysis
 - Provide an upper bound on the running time of an algorithm for any instance in a given set.

Drawbacks of Three Approaches

Empirical	1. Depends on programming language, compiler, etc.
	2. Time consuming and expensive
	3. Often inconclusive
Average-Case	1. Depends on probability distribution
	2. Difficult to determine appropriate distribution
	3. Intricate mathematical analysis
	4. No information on distribution of outcomes
Worst-Case	1. Influenced by pathological instances

The Size of a Problem

- Obviously, the time needed to solve a problem instance with a given algorithm depends on certain properties of the instance.
- The most easily identifiable such property is the *size* of the instance.
- However, it is again problematic to define what we mean by "size".
- In many cases, the size of an instance can be taken to be the number of input parameters.
- For a linear program, this would be roughly determined by the number of variables and constraints.
- The running time of certain algorithms, however, depends explicitly on the *magnitude* of the input data.

Measuring the Size of an Instance

• Formally, we consider the size of the input to be the amount of memory it takes to store a complete description of the instance in memory.

- This is still not a clear definition because it depends on our representation of the data (the *alphabet*).
- Because computers store numbers in binary format, we use the size of a binary encoding (a two symbol alphabet) as our standard measure.
- In other words, the size of a number l is the number of bits required to represent it in binary, i.e., $\log_2 l$.
- As long as the magnitude of the input data is bounded, this is equivalent to considering the number of input parameters.
- In practice, the magnitude of the input data is usually, but not always, bounded.

More on the Size of a Problem

- Note that many combinatorial problems are defined implicitly, i.e., independent of a particular formulation.
- An example of this is the Traveling Salesman Problem.
- The input data for an instance of the TSP may be either
 - an explicit a vector of costs for traveling between pairs of locations or
 - explicit coordinates of each location, with the costs being implicitly defined as Euclidean distances.
- Hence, the size of an instance may be either the number of locations or the number of costs specified between pairs of locations.
- The magnitude of the costs may also affect the size (if this is not bounded).

The Running Time of an Algorithm

- Running time is a measure of efficiency for an algorithm.
- For a given instance of a problem, we can determine (roughly) the time required to solve it with a given implementation on a given computing platform.
- Worst-case running time with respect to a given set of instances is the maximum time required over all instances.
- In most cases, worst case running time depends primarily on the size of the instances, as we have defined it.
- Therefore, our measure will typically be the worst-case running time over all instances of a given size.
- However, we still need a measure of running time that is architecture independent.
- We will simply count the number of *elementary operations* required to perform the algorithm.

More on Elementary Operations

- *Elementary operations* are the basic operation defined earlier.
- In most cases, we will assume that each of these can be performed in constant time.
- Again, this is a good assumption as long as the size of the numbers remains "small" as the calculation progresses.
- Generally we will want to ensure that the numbers can be encoded in a size polynomial in the size of the input.
- This justifies our assumption about constant time operations.
- In some cases, we may have to be very careful about checking this assumption.

Asymptotic Analysis

- So far, we have determined that our measure of running time will be a function of instance size (a positive integer).
- Determining the exact function is still problematic at best.
- We will only really be interested in approximately how quickly the function grows "in the limit".
- To determine this, we will use *asymptotic analysis*.
- We will allow some "sloppiness" and ignore constants and low order terms.
- Because of our many simplifying assumptions, the low order terms may not be accurate anyway.

Growth of Functions

- Question: Why are we *really* interested in the theoretical running times of algorithms?
- Answer: To compare different algorithm for solving the same problem.
- We are interested in performance for large input sizes.
- For this purpose, we need only compare the *asymptotic growth rates* of the running times.
 - Consider algorithm A with running time given by f and algorithm B with running time given by g.
 - We are interested in knowing

$$L = \lim_{n \to \infty} \frac{f(n)}{g(n)}$$

– What are the four possibilities?

⊖ Notation

We now define the set

$$\Theta(g) = \{ f : \exists c_1, c_2, n_0 > 0 \text{ such that } c_1 g(n) \le f(n) \le c_2 g(n) \ \forall n \ge n_0 \}$$

- If $f \in \Theta(g)$, then we say that f and g grow at the same rate or that they are of the same order.
- Note that

$$f \in \Theta(g) \Leftrightarrow g \in \Theta(f)$$

- We also know that if $\lim_{n\to\infty}\frac{f(n)}{g(n)}=c$ for some constant c, then $f\in\Theta(g)$.
- If the limit doesn't exist, we don't know.

Big-*O* **Notation**

We can similarly define the set

$$O(g) = \{f : \exists c, n_0 > 0 \text{ such that } 0 \le f(n) \le cg(n) \forall n \ge n_0\}$$

- If $f \in O(g)$, then we say that "f is big-O of g" or that g grows at least as fast as f.
- Note that if $f \in O(g)$, then either $f \in \Theta(g)$ or $\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$
- Some other notation
 - $-f \in \Omega(g) \Leftrightarrow g \in O(f).$
 - $-f \in o(g) \Leftrightarrow f \in O(g) \setminus \Theta(g) \Leftrightarrow \lim_{n \to \infty} \frac{f(n)}{g(n)} = 0.$
 - $-f \in \omega(g) \Leftrightarrow g \in o(f) \Leftrightarrow \lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty.$

Example

Let's show that if $f(n) = \frac{1}{2}(n^2 + 3n)$, then $f \in \Theta(n^2)$.

Comparing Functions

- The notation we have just defines gives us a way of ordering functions.
- We can can interpret

```
\begin{array}{l} - \ f \in O(g) \ \text{as} \ "f \leq g," \\ - \ f \in \Omega(g) \ \text{as} \ "f \geq g," \\ - \ f \in o(g) \ \text{as} \ "f < g," \\ - \ f \in \omega(g) \ \text{as} \ "f > g," \ \text{and} \\ - \ f \in \Theta(g) \ \text{as} \ "f = g." \end{array}
```

- This gives us a method for comparing algorithms based on their running times.
- Note that most of the relational properties of real numbers (transitivity, reflexivity, symmetry) work here also.
- However, not every pair of functions is comparable.

Commonly Occurring Functions

• Polynomials: All polynomials f of degree k are in $\Theta(n^k)$.

Exponentials

- A function in which n appears as an exponent on a constant is an exponential function, i.e., 2^n .
- For all positive constants a and b, $\lim_{n\to\infty} \frac{n^b}{b^a} = 0$.
- This means that exponential functions always grow faster than polynomials.

Logarithms

- Logarithms of different bases differ only by a constant multiple, so they all grow at the same rate.
- A polylogarithmic function is a function in $O(lg^k)$.
- Polylogarithmic functions always grow more slowly than polynomials.
- <u>Factorials</u>: Factorial functions grow more quickly than exponentials, but are in $o(n^n)$.

Problem Difficulty

- The *difficulty* of a problem can be judged by the (worst-case) running time of the best-known algorithm.
- Problems for which there is an algorithm with polynomial running time (or better) are called polynomially solvable.
- Generally, these problems are considered to be easy.
- There are many interesting problems for which it is not known if there is a polynomial-time algorithm.
- These problems are generally considered difficult.
- One of the great open questions in mathematics is whether these problems really are difficult or if we just haven't discovered the right algorithm yet.
- If you answer this question, you can win a million dollars.
- In this course, we will stick mostly to the easy problems.

1E411 Lecture 4 22

Example

for
$$i=1\cdots p$$
 do
$$\mathsf{for}\; j=1\cdots q\; \mathsf{do}$$
 $c_{ij}=a_{ij}+b_{ij}$

How many elementary operations?

Order Relations

- For polynomials, the order relation from the previous slide can be used to divide the set of functions into equivalence classes.
- We will only be concerned with what equivalence class the function belongs to.
- Note that class membership is invariant under multiplication by scalars and addition of "low-order" terms.
- For polynomials, the class is determined by the largest exponent on any of the variables.
- For example, all functions of the form $f(n) = an^2 + bn + c$ are $\Theta(n^2)$.

Running Time and Complexity

- Running time is a measure of the efficiency of an algorithm.
- Computational complexity is a measure of the difficulty of a problem.
- The computational complexity of a problem is the running time of the best possible algorithm.
- In most cases, we cannot prove that the best known algorithm is the also the best possible algorithm.
- We can therefore only provide an upper bound on the computational complexity in most cases.
- That is why complexity is usually expressed using "big O" notation.
- A case in which we know the exact complexity is comparison-based sorting, but this is unusual.

Aside: Space Complexity

- So far, we have discussed only the amount of computing time required to solve a problem.
- The amount of memory required to execute a given algorithm may also be an issue.
- This is known as space complexity.
- We can analyze space complexity in an analogous manner.
- This will be important in some cases.

Polynomial Time Algorithms

• An algorithm is said to be *polynomial-time* if its worst-case complexity is bounded by a polynomial function of the input.

- For network problems
 - A strongly polynomial algorithm is bounded by a polynomial function that involves only n and m.
 - A weakly polynomial has a running time that is a function of the size of the whole input, including capacities, etc.
- An algorithm is said to be *exponential-time* if it worst-case complexity grows as a function that cannot be bounded by a polynomial function.
- An algorithm is pseudopolynomial-time if its running time is bounded by a polynomial function of the actual values of the inputs parameters, such as the largest arc capacity.

Example: Finding a Simple Path

- How easy is it to determine if there is a path connecting a given pair of vertices in a graph?
- For now, let us consider undirected graphs.
- Using the operations in the **Graph** class, we can answer this question easily using a *recursive algorithm*.

Finding a Hamiltonian Path

- Now let's consider finding a path connecting a given pair of vertices that also visits every other vertex in between (called a *Hamiltonian path*).
- We can easily modify our previous algorithm to do this by passing an additional parameter d to track the path length.
- What is the change in running time?

```
def HPath(G, v, w, d)
if v == w: return d == 0
for n in G.get_node_list():
     G.set_node_attr(n, 'color', 'red')
G.set_node_attr(v, 'color', 'green')
for n in G.get_neighbors(v):
     if G.get_node_attr(n, 'color') == 'red':
         G.set_node_attr(n, 'color', 'green')
         if HPath(G, n, w, d-1):
             return true
G.set_node_attr(v, 'color', 'red')
return false
```

Worst-Case Complexity of Algorithms

- Dijkstra's Algorithm $O(n^2)$
- Dial's Algorithm O(m + nC)
- Floyd-Warshall Algorithm $O(n^3)$
- Shortest Augmenting Path Algorithm $O(n^2m)$
- Out-of-Kilter Algorithm O(nU)
- Minimum Mean Cycle-Canceling Algorithm $O(n^2m^3logn)$
- Kruskal's Algorithm O(nm)

Computational Complexity: Activity!

- Compare the following functions for various values of n.
- Determine which function is larger (according to "big O") and the approximate value of n after which it is always larger.
 - $-1000n^2$ and $2^n/100$
 - $n^{0.001}$ and $(log n)^3$
 - $-0.1n^2$ and 10000n

Computational Complexity: Summary

• (Theoretical) objective is to develop polynomial-time algorithms with smallest possible growth rate

- Why?
- Need to consider empirical performance because not all polynomial-time algorithms perform better in practice than exponential-time algorithms
 - Classic example?
 - Explanation?
- Will we always be able to find a polynomial-time algorithm for every combinatorial optimization problem?