
Graphs and Network Flows
IE411

Lecture 4

Dr. Ted Ralphs



IE411 Lecture 4 1

References for Today’s Lecture

• Required reading

– Miller and Boxer, Chapter 1

• References

– AMO Sections 3.2
– CLRS Sections 1.1–1.3

1



IE411 Lecture 4 2

Algorithms

• al·go·rithm1

1. any systematic method of solving a certain kind of problem
2. a predetermined set of instructions for solving a specific problem in a

limited number of steps

• The concept of an algorithm is not new but formal study of efficiency is
relatively new.

1Wester’s New World Dictionary

2



IE411 Lecture 4 3

Introduction to Computational Complexity

• What is the goal of computational complexity theory?

– To provide a method of comparing the difficulty of two different
problems.

– To provide a method of comparing the efficiency of two different
algorithms for the same problem.

• We would like to be able to rigorously define the meaning of efficient
algorithm.

• Complexity theory is built on a basic set assumptions called the model
of computation.

• We will not concern ourselves too much with the details of a particular
model here.

• This topic is addressed in IE 407.

3



IE411 Lecture 4 4

Elementary Operations

• In order to analyze the number of steps necessary to execute an algorithm,
we have to say what we mean by a “step.”

• To define this precisely is tedious and beyond the scope of this course.

• A precise definition depends on the exact hardware being used.

• Our analysis will assume a very simple model of a computer in which the
following operations take one step.

– arithmetic (addition, subtraction, multiplication, division)
– data movement (read from memory, store in memory, copy)
– comparison
– control (function calls, goto commands)

• This is a very idealized model, but it works in practice.

• We will sometimes need to simplify the model even further.

4



IE411 Lecture 4 5

Problems, Instances, and Algorithms

• A problem P is a mapping of a set of inputs to specified outputs.

• An instance is a problem along with a particular input.

• An algorithm is a procedure for computing the output expected from a
given input.

• An algorithm solves a problem P if that algorithm produces the expected
output for any input.

• Example: Traveling Salesman Problem

– Given an undirected graph G = (N,A) and non-negative arc lengths
dij for all (i, j) ∈ A, find a cycle that visits all nodes exactly once and
is of minimum total length.

– How do we specify an instance?

5



IE411 Lecture 4 6

Computational Complexity: What is the Objective?

• Complexity analysis is aimed at answering two types of questions.

– How hard is a given problem?
– How efficient is a given algorithm for a given problem?

• Our measure of efficiency will be running time, defined as either

– The actual wall clock time required to execute the algorithm on a
computer (problematic) or

– the number of elementary operations required (more on this later).

• The running time may differ by instance, algorithm, and computing
platform.

• How should we measure the performance so that we can select the “best”
algorithm from among several?

6



IE411 Lecture 4 7

What Do We Measure?

Three methods of analysis:

• Empirical analysis

– Try to determine how algorithms behave in practice on real
computational platforms under load in real-world conditions.

• Average-case analysis

– Try to determine the expected running time an algorithm will take
analytically.

• Worst-case analysis

– Provide an upper bound on the running time of an algorithm for any
instance in a given set.

7



IE411 Lecture 4 8

Drawbacks of Three Approaches

Empirical 1. Depends on programming language, compiler, etc.
2. Time consuming and expensive
3. Often inconclusive

Average-Case 1. Depends on probability distribution
2. Difficult to determine appropriate distribution
3. Intricate mathematical analysis
4. No information on distribution of outcomes

Worst-Case 1. Influenced by pathological instances

8



IE411 Lecture 4 9

The Size of a Problem

• Obviously, the time needed to solve a problem instance with a given
algorithm depends on certain properties of the instance.

• The most easily identifiable such property is the size of the instance.

• However, it is again problematic to define what we mean by “size”.

• In many cases, the size of an instance can be taken to be the number of
input parameters.

• For a linear program, this would be roughly determined by the number
of variables and constraints.

• The running time of certain algorithms, however, depends explicitly on
the magnitude of the input data.

9



IE411 Lecture 4 10

Measuring the Size of an Instance

• Formally, we consider the size of the input to be the amount of memory
it takes to store a complete description of the instance in memory.

• This is still not a clear definition because it depends on our representation
of the data (the alphabet).

• Because computers store numbers in binary format, we use the size of a
binary encoding (a two symbol alphabet) as our standard measure.

• In other words, the size of a number l is the number of bits required to
represent it in binary, i.e., log2 l.

• As long as the magnitude of the input data is bounded, this is equivalent
to considering the number of input parameters.

• In practice, the magnitude of the input data is usually, but not always,
bounded.

10



IE411 Lecture 4 11

More on the Size of a Problem

• Note that many combinatorial problems are defined implicitly, i.e.,
independent of a particular formulation.

• An example of this is the Traveling Salesman Problem.

• The input data for an instance of the TSP may be either

– an explicit a vector of costs for traveling between pairs of locations or
– explicit coordinates of each location, with the costs being implicitly

defined as Euclidean distances.

• Hence, the size of an instance may be either the number of locations or
the number of costs specified between pairs of locations.

• The magnitude of the costs may also affect the size (if this is not
bounded).

11



IE411 Lecture 4 12

The Running Time of an Algorithm

• Running time is a measure of efficiency for an algorithm.

• For a given instance of a problem, we can determine (roughly) the time
required to solve it with a given implementation on a given computing
platform.

• Worst-case running time with respect to a given set of instances is the
maximum time required over all instances.

• In most cases, worst case running time depends primarily on the size of
the instances, as we have defined it.

• Therefore, our measure will typically be the worst-case running time over
all instances of a given size.

• However, we still need a measure of running time that is architecture
independent.

• We will simply count the number of elementary operations required to
perform the algorithm.

12



IE411 Lecture 4 13

More on Elementary Operations

• Elementary operations are the basic operation defined earlier.

• In most cases, we will assume that each of these can be performed in
constant time.

• Again, this is a good assumption as long as the size of the numbers
remains “small” as the calculation progresses.

• Generally we will want to ensure that the numbers can be encoded in a
size polynomial in the size of the input.

• This justifies our assumption about constant time operations.

• In some cases, we may have to be very careful about checking this
assumption.

13



IE411 Lecture 4 14

Asymptotic Analysis

• So far, we have determined that our measure of running time will be a
function of instance size (a positive integer).

• Determining the exact function is still problematic at best.

• We will only really be interested in approximately how quickly the function
grows “in the limit”.

• To determine this, we will use asymptotic analysis.

• We will allow some “sloppiness” and ignore constants and low order
terms.

• Because of our many simplifying assumptions, the low order terms may
not be accurate anyway.

14



IE411 Lecture 4 15

Growth of Functions

• Question: Why are we really interested in the theoretical running times
of algorithms?

• Answer: To compare different algorithm for solving the same problem.

• We are interested in performance for large input sizes.

• For this purpose, we need only compare the asymptotic growth rates of
the running times.

– Consider algorithm A with running time given by f and algorithm B
with running time given by g.

– We are interested in knowing

L = lim
n→∞

f(n)

g(n)

– What are the four possibilities?

15



IE411 Lecture 4 16

Θ Notation

• We now define the set

Θ(g) = {f : ∃c1, c2, n0 > 0 such that c1g(n) ≤ f(n) ≤ c2g(n) ∀n ≥ n0}

• If f ∈ Θ(g), then we say that f and g grow at the same rate or that
they are of the same order.

• Note that
f ∈ Θ(g)⇔ g ∈ Θ(f)

• We also know that if limn→∞
f(n)
g(n) = c for some constant c, then

f ∈ Θ(g).

• If the limit doesn’t exist, we don’t know.

16



IE411 Lecture 4 17

Big-O Notation

• We can similarly define the set

O(g) = {f : ∃c, n0 > 0 such that 0 ≤ f(n) ≤ cg(n)∀n ≥ n0}

• If f ∈ O(g), then we say that “f is big-O of g” or that g grows at least
as fast as f .

• Note that if f ∈ O(g), then either f ∈ Θ(g) or limn→∞
f(n)
g(n) = 0

• Some other notation

– f ∈ Ω(g)⇔ g ∈ O(f).

– f ∈ o(g)⇔ f ∈ O(g) \Θ(g)⇔ limn→∞
f(n)
g(n) = 0.

– f ∈ ω(g)⇔ g ∈ o(f)⇔ limn→∞
f(n)
g(n) =∞.

17



IE411 Lecture 4 18

Example

Let’s show that if f(n) = 1
2(n2 + 3n), then f ∈ Θ(n2).

18



IE411 Lecture 4 19

Comparing Functions

• The notation we have just defines gives us a way of ordering functions.

• We can can interpret

– f ∈ O(g) as “f ≤ g,”
– f ∈ Ω(g) as “f ≥ g,”
– f ∈ o(g) as “f < g,”
– f ∈ ω(g) as “f > g,” and
– f ∈ Θ(g) as “f = g.”

• This gives us a method for comparing algorithms based on their running
times.

• Note that most of the relational properties of real numbers (transitivity,
reflexivity, symmetry) work here also.

• However, not every pair of functions is comparable.

19



IE411 Lecture 4 20

Commonly Occurring Functions

• Polynomials: All polynomials f of degree k are in Θ(nk).

• Exponentials

– A function in which n appears as an exponent on a constant is an
exponential function, i.e., 2n.

– For all positive constants a and b, limn→∞
nb

ba = 0.
– This means that exponential functions always grow faster than

polynomials.

• Logarithms

– Logarithms of different bases differ only by a constant multiple, so
they all grow at the same rate.

– A polylogarithmic function is a function in O(lgk).
– Polylogarithmic functions always grow more slowly than polynomials.

• Factorials: Factorial functions grow more quickly than exponentials, but
are in o(nn).

20



IE411 Lecture 4 21

Problem Difficulty

• The difficulty of a problem can be judged by the (worst-case) running
time of the best-known algorithm.

• Problems for which there is an algorithm with polynomial running time
(or better) are called polynomially solvable.

• Generally, these problems are considered to be easy.

• There are many interesting problems for which it is not known if there is
a polynomial-time algorithm.

• These problems are generally considered difficult.

• One of the great open questions in mathematics is whether these problems
really are difficult or if we just haven’t discovered the right algorithm yet.

• If you answer this question, you can win a million dollars.

• In this course, we will stick mostly to the easy problems.

21



IE411 Lecture 4 22

Example

for i = 1 · · · p do

for j = 1 · · · q do

cij = aij + bij

How many elementary operations?

22



IE411 Lecture 4 23

Order Relations

• For polynomials, the order relation from the previous slide can be used
to divide the set of functions into equivalence classes.

• We will only be concerned with what equivalence class the function
belongs to.

• Note that class membership is invariant under multiplication by scalars
and addition of “low-order” terms.

• For polynomials, the class is determined by the largest exponent on any
of the variables.

• For example, all functions of the form f(n) = an2 + bn + c are Θ(n2).

23



IE411 Lecture 4 24

Running Time and Complexity

• Running time is a measure of the efficiency of an algorithm.

• Computational complexity is a measure of the difficulty of a problem.

• The computational complexity of a problem is the running time of the
best possible algorithm.

• In most cases, we cannot prove that the best known algorithm is the also
the best possible algorithm.

• We can therefore only provide an upper bound on the computational
complexity in most cases.

• That is why complexity is usually expressed using “big O” notation.

• A case in which we know the exact complexity is comparison-based
sorting, but this is unusual.

24



IE411 Lecture 4 25

Aside: Space Complexity

• So far, we have discussed only the amount of computing time required
to solve a problem.

• The amount of memory required to execute a given algorithm may also
be an issue.

• This is known as space complexity.

• We can analyze space complexity in an analogous manner.

• This will be important in some cases.

25



IE411 Lecture 4 26

Polynomial Time Algorithms

• An algorithm is said to be polynomial-time if its worst-case complexity is
bounded by a polynomial function of the input.

• For network problems

– A strongly polynomial algorithm is bounded by a polynomial function
that involves only n and m.

– A weakly polynomial has a running time that is a function of the size
of the whole input, including capacities, etc.

• An algorithm is said to be exponential-time if it worst-case complexity
grows as a function that cannot be bounded by a polynomial function.

• An algorithm is pseudopolynomial-time if its running time is bounded by
a polynomial function of the actual values of the inputs parameters, such
as the largest arc capacity.

26



IE411 Lecture 4 27

Example: Finding a Simple Path

• How easy is it to determine if there is a path connecting a given pair of
vertices in a graph?

• For now, let us consider undirected graphs.

• Using the operations in the Graph class, we can answer this question
easily using a recursive algorithm.

def SPath(G, v, w):

if v == w:

return true

for n in G.get_node_list():

G.set_node_attr(n, ’color’, ’red’)

v.set_node_attr(’color’) = ’green’

for n in G.get_neighbors(v):

if G.get_node_attr(n, ’color’) == ’red’

G.set_node_attr(n, ’color’, ’green’)

if SPath(G, n, w):

return true

return false

27



IE411 Lecture 4 28

Finding a Hamiltonian Path

• Now let’s consider finding a path connecting a given pair of vertices that
also visits every other vertex in between (called a Hamiltonian path).

• We can easily modify our previous algorithm to do this by passing an
additional parameter d to track the path length.

• What is the change in running time?

def HPath(G, v, w, d)

if v == w: return d == 0

for n in G.get_node_list():

G.set_node_attr(n, ’color’, ’red’)

G.set_node_attr(v, ’color’, ’green’)

for n in G.get_neighbors(v):

if G.get_node_attr(n, ’color’) == ’red’:

G.set_node_attr(n, ’color’, ’green’)

if HPath(G, n, w, d-1):

return true

G.set_node_attr(v, ’color’, ’red’)

return false

28



IE411 Lecture 4 29

Worst-Case Complexity of Algorithms

• Dijkstra’s Algorithm O(n2)

• Dial’s Algorithm O(m + nC)

• Floyd-Warshall Algorithm O(n3)

• Shortest Augmenting Path Algorithm O(n2m)

• Out-of-Kilter Algorithm O(nU)

• Minimum Mean Cycle-Canceling Algorithm O(n2m3logn)

• Kruskal’s Algorithm O(nm)

29



IE411 Lecture 4 30

Computational Complexity: Activity!

• Compare the following functions for various values of n.

• Determine which function is larger (according to “big O”) and the
approximate value of n after which it is always larger.

– 1000n2 and 2n/100
– n0.001 and (log n)3

– 0.1n2 and 10000n

30



IE411 Lecture 4 31

Computational Complexity: Summary

• (Theoretical) objective is to develop polynomial-time algorithms with
smallest possible growth rate

– Why?

• Need to consider empirical performance because not all polynomial-time
algorithms perform better in practice than exponential-time algorithms

– Classic example?
– Explanation?

• Will we always be able to find a polynomial-time algorithm for every
combinatorial optimization problem?

31


