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Lagrangian Relaxation

• Lagrangian Relaxation is a method of capitalizing on our ability to solve
an underlying base model after adding side constraints.

• We remove the complicating constraints and instead assign a price
associated with the resource.

• We can think of this price as a penalty for violation of the resource
constraint.

• We set the prices, solve the underlying problem and then see if the
resulting solution is feasible.
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Example: Constrained Shortest Path

• Let us consider a shortest path problem in which each arc has both a
length cij and a traversal time tij associated with it.

• We want to find the shortest path subject to the constraint that the
total time is less than a certain limit T .

• Instead of imposing the limit directly, we assign a cost µ for each unit of
time it takes to traverse the path.

• We then solve a regular shortest path problem with costs equal to
cij + µtij.

• We can adjust µ if the time constraint is violated.
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Bounding Principle

• Consider the modified cost of a feasible solution, i.e., a path that satisfies
the time constraint.

• By definition, the additional cost imposed by the time penalty cannot be
more than µT .

• Therefore, if we subtract µT from the modified cost, we will get a lower
bound on the true cost.

• Another way of viewing this procedure is that we are adding
µ(

∑
(i,j)∈P tij − T ) to the cost of the path P .

• We can then think of µ as being a penalty on the slack in the time
constraint.

• This is the general principle of Lagrangian Relaxation.
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General Principle

• In general, the idea is to relax the constraints that we don’t know how
to deal with algorithmically.

• We have a vector of multiplier µ associated with all the constraints to
be relaxed.

• The Lagrangian subproblem is to optimize over the relaxed problem with
the costs adjusted by penalizing slack in the constraints.

• The value of the solution to the Lagrangian subproblem is denoted L(µ).

• Note that for inequalities, we must constrain the sign of the multiplier
appropriately.

• The Lagrangian dual is to find the multipliers that maximize the lower
bound.
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Optimality Conditions

• When the constraints to be relaxed are equality constraints, if either

1. For some solution x to the original problem and some choice of
multipliers µ, we have L(µ) = cx or

2. For some choice of multipliers, the solution x to the Lagrangian
subproblem is feasible for the original problem,

then x is optimal for the original problem.

• When some constraints are inequalities, we must also have
complementary slackness, which says that the product of the multiplier
and the slack for each constraint must be zero.
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Solving the Lagrangian Dual

• Let us consider what L(µ) looks like as a function.

• We will consider the constrained shortest path problem as an example.

• Conceptually, one way we could compute L(µ) would be to enumerate
all the paths and then taken the one that gave the smallest value.

• For a fixed path, the cost is linear in µ.

• Therefore, L(µ) as a function is the minimum of a finite number of linear
functions.

• This means it is piecewise linear and concave.

• Thus, we need to maximize a concave function.

• This can be done with subgradient optimization.
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Subgradient Optimization

• The idea is to compute L(µ) for some “guess” at the optimal multipliers.

• Then compute the gradient of the function and proceed in the direction
indicated by the gradient (steepest ascent).

• We go in this direction for a certain fixed step size and this gives us a
new guess.

• Fortunately, the gradient of the function L(µ) is easy to compute.
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Implementation

For the constrained shortest path case, the basic loop for the equality
constrained case is as follows:

• Pick an initial value for the multiplier µ0 and k ← 0

• Main loop

– Compute L(µk) by solving a shortest path problem with the time
penalty µk to obtain path P k.

– If optimal, STOP.
– Otherwise, µk+1 ← [µk + θk(

∑
(i,j)∈P k tij − T )]+.

• Note that the multipliers are never allowed to become negative.

• The value
∑

(i,j)∈P k tij − T is the gradient of L(µ) at µk.
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Generalizing

The method is easy to generalize to other problem types. Here, we show
the generalization for problem for which we have all inequalities.

• Pick initial multipliers µ0

• Main loop

– Compute L(µk) by solving the relaxation with Lagrangian objective to
obtain xk

– If optimal, STOP.
– Otherwise, µk+1 ← [µk + θks

k]+.

Here, sk is the slack in the inequality constraints.
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Convergence

• The main algorithmic choice in subgradient optimization is what step
sizes to take (θk).

• Under mild conditions, the algorithm is guaranteed to converge to the
optimal multipliers.

• Primarily the sequence of steps sizes must go to zero in the limit, but
their infinite sum must go to ∞.

• In practice, choosing step sizes is something of an art.
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Performing the Updates

• Suppose we have an estimate L∗ of the optimal value.

• We can choose µk+1 such that the Lagrangian objective of xk is L∗.

• In other words, we want

cxk + µk+1sk = L∗

• At the same time, we have that µk+1 = µk + θks
k (in the equality

constrained case), so we have

cxk + [µk + θks
k]sk = L∗
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Performing the Updates (cont.)

• Finally, solving and putting it all together, we obtain

θk =
L∗ − L(µk)
‖sk‖2

• Since we do not usually know a good value for the new target, we can
instead use the value of the best know solution.

• We also scale by a small factor that we reduce as the algorithm progresses.

• We then finally have

θk =
λk[UB − L(µk)]

‖sk‖2

• Typically, we start with λ0 = 2 and then reduced λ by half each time
the Lagrangian objective does not improve for a specified number of
iterations.

• Note that there is no convenient stopping criteria.
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