Graphs and Network Flows IE411

Lecture 21

Dr. Ted Ralphs

Combinatorial Optimization and Network Flows

- In general, most combinatorial optimization and integer programming problems are difficult to solve.
- Some class of combinatorial optimization programs have direct, efficient combinatorial algorithms.
- Many of these are somehow related to network flows.
- For example, we will see the connections between all of these problems.
 - Shortest Path Problem
 - Maximum Flow Problem
 - Matching Problem
 - Minimum Spanning Tree Problem
 - Minimum Cut Problem
 - Assignment Problem
 - Postman Problem

IP Formulation of MST

Let A(S) be the set of arcs contained in the subgraph of G=(N,A) induced by the node set S. Let x_{ij} be a 0-1 variable that indicates whether we select arc (i,j) to be in the spanning tree.

Minimize
$$\sum_{(i,j)\in A} c_{ij} x_{ij} \tag{1}$$

subject to
$$\sum_{(i,j)\in A} x_{ij} = n-1 \tag{2}$$

$$\sum_{(i,j)\in A(S)} x_{ij} \le |S| - 1 \quad \forall S \subseteq N \tag{3}$$

LP Relaxation

- For any LP, we can use reduced costs and complementary slackness optimality conditions to assess whether a given feasible solution if optimal.
- Notice that when S = N, constraint (3) is redundant.
- We associate a potential μ_S with every $S \subset N$.
- From the dual, we find that μ_N is free but $\mu_S \geq 0$.
- Then, the reduced cost of arc (i,j) is $c_{ij}^{\mu} = c_{ij} + \sum_{A(S):(i,j)\in A(S)} \mu_S$.

Results

Lemma 1. A solution x of the MST problem is an optimal solution to the LP relaxation of the IP formulation if and only if we can find potentials μ_S defined on node sets S so that

$$c_{ij}^{\mu} = 0 \quad \text{if } x_{ij} > 0$$

$$c_{ij}^{\mu} \ge 0 \quad \text{if } x_{ij} = 0$$

Theorem 1. [13.9] If x is the solution generated by Kruskal's Algorithm, then x solves both the integer program and its LP relaxation.

Defining Potentials

- Set μ_N to the negative cost of the last arc added to the tree.
- Let S(i,j) be the node component created by adding arc (i,j) to the tree.
- As the algorithm progresses, when it adds arc (p,q) to the tree, it combines node component S(i,j) with one or more other nodes to define a larger component.
- Set $\mu_{S(i,j)} = c_{pq} c_{ij}$.

Proving Optimality

• Check reduced cost of every arc. What do we find?

Theorem 2. [13.10] The polyhedron defined by the LP relaxation of the packing formulation of the MST problem has integer extreme points.

Matroids

 Notice the algorithms for finding minimum weight spanning trees depend on two properties:

- Any acyclic subgraph with fewer than n-1 edges can always be extended to a spanning tree.
- If we have two acyclic subgraphs, one of which includes more edges, the smaller can be extended with an edge from the larger.
- We can generalize these properties to other combinatorial problems.

Submodular Functions

Definition 1. A set function $f: 2^N \to \mathbb{R}$ is submodular if

$$f(A) + f(B) \ge f(A \cap B) + f(A \cup B)$$
 for all $A, B \subseteq N$.

Definition 2. A set function f is nondecreasing if

$$f(A) \leq f(B)$$
 for all A, B with $A \subset B \subseteq N$.

Proposition 1. A set function f is nondecreasing and submodular if and only if

$$f(A) \le f(B) + \sum_{j \in A \setminus B} \left[f(B \cup \{j\}) - f(B) \right].$$

Submodular Polyhedra

• We now consider a *submodular polyhedron* defined by

$$\mathcal{P}(f) = \{ x \in \mathbb{R}^n_+ \mid \sum_{j \in S} x_j \le f(S) \text{ for } S \subseteq N \}.$$

 We are interested in solving the associated submodular optimization problem

$$\min\{cx : x \in \mathcal{P}(f)\}$$

- Consider the following greedy algorithm.
 - Order the variables so that $c_1 \le c_2 \le \cdots \le c_r > 0 \le c_{r+1} \le \cdots \le c_n$.
 - Set $x_i = f(S^i) f(S^{i-1})$ for $i = 1, \ldots, r$ and $x_j = 0$ for j > r, where $S^i = \{1, \ldots, i\}$ for $i = 1, \ldots, r$ and $S^0 = \emptyset$.

The Greedy Algorithm and Matroids

- Surprisingly, the greedy algorithm solves all submodular optimization problems!
- ullet Furthermore, when f is integer-valued, the greedy algorithm provides an integral solution.
- In the special case when $f(S \cup \{j\}) f(S) \in \{0,1\}$, we call f a submodular rank function.

Definition 3. Given a submodular rank function r, a set $A \subseteq N$ is independent if r(A) = |A|. The pair (N, \mathcal{F}) , where \mathcal{F} is the set of independent sets is called a matroid.

11 Lecture 21

Properties of Matroids

- Given a matroid (N, \mathcal{F}) .
 - 1. If A is an independent set and $B \subseteq A$, then B is an independent set.
 - 2. If A and B are independent sets with |A| > |B|, then there exists some $j \in A \setminus B$ such that $A \cup \{j\}$ is independent.
 - 3. Every maximal independent set has the same cardinality.
- Pairs (N, \mathcal{F}) with property 1 are *independence systems*.
- In fact, properties 1 and 2 are equivalent to our original definition and properties 2 and 3 are equivalent.

Common Matroids

Matric Matroids

- Ground set is the set of columns/rows of a matrix.
- Independent sets are the sets of linearly independent rows/columns.

Graphic Matroid

- The ground set is the set of edges of a graph.
- Independent sets are the sets of edges of the graph that do not form a cycle.

Partition Matroid

- Ground set is the union of m finite disjoint sets E_i for $i = 1, \ldots, r$.
- Independent sets are sets formed by taking at most one element from each set E_i .

Generalizing from Spanning Trees

- Everything we learned from spanning trees can be generalized.
- All maximal independent sets have the same cardinality and are called bases.
- A spanning tree is a basis of the graphic matroid.
- A fundamental property of matroids is that it is always possible to find a basis of minimum weight using a *greedy algorithm*.
- In fact, an independence system is a matroid if and only if the greedy algorithm always finds a basis of minimum weight.

Red-Blue Algorithm for the Minimum Spanning Tree Problem

- Start with all edges uncolored.
- The Blue Rule
 - Find a cut with no BLUE edges.
 - Pick an edge of minimum weight and color it BLUE.
- The Red Rule
 - Find a cycle containing no RED edges.
 - Pick an uncolored edge of maximum weight and color it RED.
- Arbitrary application of the RED and BLUE rules result in a minimum weight spanning tree.

Generalizing to Matroids

- A *cycle* is a setwise minimal dependent set.
- A *cut* is a setwise maximal subset that intersects all maximal independent sets.
- The Red-Blue Algorithm can be applied to any matroid to find a basis of minimum weight.
- Matroids arise naturally in many contexts.
- We will see them later in the assignment problem context.

Matching Problems

- MST and Matching Problems are two combinatorial optimization problems that are defined over graphs with a weight associated with each arc.
- A *matching* in a graph is a set of edges with the property that no two share a common endpoint.
- Two well-known matching problems
 - Find a matching that has as many edges as possible.
 - Given weights for each edge, find a matching with the largest total weight.
- Matching algorithms use the concept of *augmentations*, but detecting and performing augmentations efficiently is more complicated here.

Definitions

• Given a graph G = (N, A), the objective of the matching problem is to find a maximum matching M of G.

- We say that the matching is *complete* or *perfect* when the cardinality of M is $\lfloor \frac{|N|}{2} \rfloor$.
- Given a matching M in G, edges in M are called *matched* edges; others are *free* edges.
- Nodes that are not incident upon any matched edge are called *exposed*; remaining are *matched*.

Definitions (con't)

- A path $p = [u_1, u_2, \dots, u_k]$ is called *alternating* if edges (u_1, u_2) , (u_3, u_4) \cdots are free and (u_2, u_3) , (u_4, u_5) are matched.
- An alternating path p is called *augmenting* if both u_1 and u_k are exposed.

Augmenting a Matching

Lemma 2. Let P be the set of edges on an augmenting path $p = [u_1, u_2, \cdots, u_{2k}]$ in a graph G with respect to the matching M. Then $M' = M \oplus P$ is a matching of cardinality |M| + 1.

Proof:

Maximum Matching

Theorem 3. A matching M in a graph G is maximum if and only if there is no augmenting path in G with respect to M.

- Theorem characterizes maximum matchings in terms of augmenting paths.
- Like maximum flow, it suggests an algorithm: Start with any matching. Repeatedly discover augmenting paths.
- All known algorithms for matchings are based on this idea, but the details are quite involved...except for the case of bipartite graphs.

Bipartite Matching and Network Flow

- A graph G = (N, A) is a bipartite graph if we can partition its node set into two subsets N_1 and N_2 so that for each arc $(i, j) \in A$ either (i) $i \in N_1$ and $j \in N_2$ or (ii) $i \in N_2$ and $j \in N_1$.
- We can reduce bipartite matching problem to maximum flow problem for simple networks and solve efficiently by making use of any algorithm for maximum flow.
- How can we convert the bipartite matching problem into an equivalent maximum flow problem?

Maximum Matching

Lemma 3. The cardinality of the maximum matching in a bipartite graph equals the value of the maximum flow in the corresponding maximum flow network.

- **Proof:** 1. Given any matching M, we can construct a feasible flow in N(G) with value |M|.
- 2. Given a maximum flow in N(G), we can construct a matching with cardinality of the maximum flow value.

Notes on Maximum Cardinality Matching

- We can solve the bipartite matching problem in $O(\sqrt{n} \ m)$ time.
- Asymptotically fastest algorithm for bipartite matching.
- Non-Bipartite Matching
 - Reduction to maximum flow does not seem to carry over.
 - Augmenting path theorem holds for general graphs, so idea of repeatedly augmenting can be extended.
 - Finding augmenting paths is more difficult with non-bipartite structure.

Weighted Matching

• Given the graph G = (N, A) with a corresponding weight w_{ij} for each arc (i, j), the objective of the weighted matching problem is to find a matching with the largest possible sum of weights.

Assumptions

- Underlying graph is complete.
- Underlying graph has even number of nodes.
- (For bipartite), underlying graph has node sets that are equal in size.
- Another name is *Assignment Problem*.

Assignment Problem

- Write the IP formulation for the Assignment Problem.
- Assignment Problem is a special case of which network flow problem?
- How can we solve the Assignment Problem?

Matching and the Postman Problem

- Given an undirected graph (G, A), the *postman problem* is to find the shortest *tour* that traverses each edge at least once.
- A graph for which it is possible to do this while traversing each edge exactly once is called *Eulerian*.
- An undirected graph is Eulerian if and only if every node has even degree.
- How can we use this fact to solve the postman problem?
- How can we extend this to directed graphs?

Back to Matroids: Matroid Intersection

- Consider two matroids M_1 and M_2 defined on the same ground set N and with the same rank k.
- M_1 and M_2 admit a common basis if and only if for every $S \subseteq N$, we have $r_1(A) + r_2(N \setminus S) \ge k$.
- A perfect matching in a bipartite graph is a common basis for two partition matroids, one associated with each set of nodes.
- From this, we can derive that G has a perfect matching if and only if it has a vertex cover of size less than k.
- Associated problems are that of finding the largest common independent set of M_1 and M_2 and that of finding the common independent set of minimum/maximum weight.
- These problems can be solved efficiently in general for two matroids (but not for three or more).

Back to Matroids: Max Flow and Min Cut Matroids

 The maximum flow problem can be viewed as a combinatorial problem as follows.

- Let us consider a network G = (N, A) with associated cost vector c and capacities u, as usual.
 - We designate one edge e as a special edge.
 - We consider a collection F of (not necessarily distinct) cycles, each including the special edge.
 - Any collection in which no more than u_{ij} cycles include arc (i,j) for all $(i,j) \in A$ is called *feasible*.
 - Then the maximum flow problem is to find a feasible collection with the largest cardinality.
 - We can define an analog of the minimum cut problem similarly.
- This problem can be interpreted in terms of general matroids, but the max flow-min cut does not hold in this more general setting.