Graphs and Network Flows IE411

Lecture 13

Dr. Ted Ralphs

References for Today's Lecture

References for Today's Lecture

- Required reading
 - Sections 21.1-21.2
- References
 - AMO Chapter 6
 - CLRS Sections 26.1-26.2

Labeling Algorithm (Ford and Fulkerson (1956))

- Fill in details of generic augmenting path algorithm
 - how to identify augmenting path (or show no path exists)
 - whether algorithm terminates in finite number of iterations
 - whether final flow value is maximal
- The labeling algorithm is the most straightforward variant.
- The cost to find the augmenting path is low, but the number of augmnentations can be high.
- Depth-first search is a special case.

Identifying an Augmenting Path

- Use search technique to find a directed path in G(x) from s to t
 - At any step, partition nodes into <u>labeled</u> and <u>unlabeled</u>
 - Iteratively select a labeled node and scan its arc adjacency list in G(x) to reach and label additional nodes
 - When sink becomes labeled, augment flow, erase labels and repeat
 - Terminate when all labeled nodes have been scanned and sink remains unlabeled

Labeling Algorithm

```
Input: A network G = (N, A) and a vector of capacities u \in \mathbb{Z}^A
Output: x represents the maximum flow from node s to node t
  label node t
  while t is labeled do
    unlabel all nodes
    pred(j) \leftarrow 0 \ \forall j \in N
     label node s and set LIST \leftarrow \{s\}
    while LIST \neq \emptyset and t is unlabeled do
       remove a node i from LIST
       for each arc (i, j) in the residual network do
          if node j is unlabeled then
            pred(j) \leftarrow i
            label node j and add j to LIST
          end if
       end for
    end while
    if t is labeled then
       augment
    end if
  end while
```

Example of Labeling Algorithm

Correctness of Labeling Algorithm

Claim 1. When the algorithm terminates, the current flow x is a maximum flow.

Proof:

Note that in each iteration of the while loop, the algorithm either (i) performs an augmentation or (ii) terminates. Therefore, we need to show that the current flow x is a maximum flow when (ii) occurs.

Max-Flow Min-Cut Theorem

Theorem 1. [6.3] The maximum value of the flow from a source node s to a sink node t in a capacitated network equals the minimum capacity among all s-t cuts.

Proof: Follows from the Correctness of the Labeling Algorithm.

Augmenting Path Theorem

Theorem 2. [6.4] A flow x^* is a maximum flow if and only if the residual network $G(x^*)$ contains no augmenting path.

Proof:

Integrality Theorem

Theorem 3. [6.5] If all arc capacities are integer, the maximum flow problem has an integer maximum flow.

Proof:

11 Lecture 13

Complexity of the Labeling Algorithm

Theorem 4. [6.6] The Labeling Algorithm solves the maximum flow problem in O(mnU) time.

Proof:

At each iteration of the while loop, how much work is done?

How many augmentations are done?

Flows with Lower Bounds

• Suppose that we add non-negative lower bounds on the arc flows to the maximum flow problem:

$$l_{ij} \leq x_{ij} \leq u_{ij}, \forall (i,j) \in A.$$

- Zero flow is no longer always a feasible solution.
- Objective: determine if the problem is feasible and, if so, establish a maximum flow.
- Approach: first, determine a feasible flow and then determine a maximum flow.

Determining a Feasible Flow

- Transform max flow into circulation (max flow has feasible flow if and only if circulation has feasible flow)
- Identify an infeasible arc (p,q) (one that violates lower bound).
- Start with the zero flow and then augment flow around cycles with (p,q) as a forward arc.
- The algorithm terminates with either a feasible circulation or a proof that no such circulation exists.

Theorem 5. [6.11] A circulation problem with non-negative lower bounds on the arc flows is feasible if and only if, for every set S of nodes,

$$\sum_{(i,j)\in(\bar{S},S)} l_{ij} \leq \sum_{(i,j)\in(S,\bar{S})} u_{ij}.$$

Determining a Maximum Flow

- ullet Suppose that we have a feasible flow x in the network.
- To obtain a maximum flow, we can modify any maximum flow algorithm to accommodate non-negative lower bounds.
- Define the residual capacity of an arc (i, j) to be

$$r_{ij} = (u_{ij} - x_{ij}) + (x_{ji} - l_{ji})$$

- From optimal residual capacities, we can construct a maximum flow.
- Theorem 6.10 is a generalized version of the Max-Flow Min-Cut Theorem for networks with both lower bounds and upper bounds on the arc flows.

Application: Network Connectivity

- Two directed paths from s to t are $arc\ disjoint$ if they do not have any arc in common.
- Given a directed network G = (N, A) and two specified nodes s and t:
 - What is the maximum number of arc-disjoint directed paths from node s to node t?
 - What is the minimum number of arcs that we should remove from the network so that it contains no directed paths from s to t?

Theorem 6. [6.7] The maximum number of arc-disjoint paths from node s to node t equals the minimum number of arcs whose removal from the network disconnects all paths from s to t.

Application: Matchings and Covers in a Bipartite Network

Given a directed bipartite network G = (N, A), where $N = N_1 \cup N_2$:

- A subset $A' \subseteq A$ is a matching if no two arcs in A' are incident to the same node.
- A subset $N' \subseteq N$ is a $node\ cover$ if every arc in A is incident to one of the nodes in N'.

Theorem 7. [6.9] In a bipartite network $G = (N_1 \cup N_2, A)$, the maximum cardinality of any matching equals the minimum cardinality of any node cover of G.