Graphs and Network Flows IE411

Lecture 11

Dr. Ted Ralphs

References for Today's Lecture

- Required reading
 - Sections 21.3
- References
 - AMO Chapter 5
 - CLRS Chapter 25

Label-Correcting Algorithms

Generic

- $-O(n^2C)$ iterations (recall d(j) bounded by nC and -nC)
- No specified method for selecting an arc violating optimality conditions

Modified

- By repeatedly scanning arcs in a fixed order, we can get a strongly polynomial time algorithm.
- Practical improvement: Maintain a list of arcs that might violate optimality conditions
 - * If we decrease d(j), what do we know about reduced lengths of incoming arcs? outgoing arcs?
 - * Which arcs could violate optimality conditions after a label is modified?

Special Implementations of Modified Label-Correcting

FIFO Label-Correcting

- -O(mn) is best strongly polynomial-time implementation
- Maintain a queue and examine nodes in FIFO order

Dequeue Implementation

- a dequeue allows elements to be added or deleted from both front and back
- always select nodes from front; add previously seen nodes to front, all others to back
- -O(nmC) but performs well in practice for sparse networks

FIFO Label-Correcting Algorithm

```
Input: A network G = (N, A) and a vector of arc lengths c \in \mathbb{Z}^A
Output: d(i) is the length of a shortest path from node s to node i and
  pred(i) is the immediate predecessor of i in an associated shortest paths
  tree.
  d(s) \leftarrow 0 \text{ and } pred(s) \leftarrow 0
  d(j) \leftarrow \infty for each j \in N \setminus \{s\}
  Q \leftarrow \{s\}
  while Q \neq \emptyset do
     Remove the first element i from Q
     for (i, j) \in A(i) do
        if d(j) > d(i) + c_{ij} then
           d(j) \leftarrow d(i) + c_{ij}
           pred(j) \leftarrow i
           if j \notin Q then
              add j to the end of Q
           end if
        end if
     end for
  end while
```

All-Pairs Shortest Path Problem

• Determine the shortest path distance between every pair of nodes in the network.

- Assume underlying network is strongly connected
- Assume network does not contain a negative cost cycle
- Algorithms
 - Repeated Shortest Path
 - All-Pairs Label-Correcting

Repeated Shortest Path Algorithm (Non-Negative Arc Lengths)

- For each node $i \in N$, solve a single-source shortest path problem with node i as the source using any appropriate algorithm.
- Complexity: Let S(n, m, C) denote the time required to solve a shortest path problem with non-negative arc lengths. Then, the complexity is $O(n \cdot S(n, m, C))$.

Repeated Shortest Path Algorithm (Negative Arc Lengths)

- Transform the network into one with non-negative arc lengths.
- For each node $i \in N$, solve a single-source shortest path problem with node i as the source using any appropriate algorithm.
- Compute the shortest path distances in the original network from the shortest path distances in the transformed network.
- Complexity: $O(nm + n \cdot S(n, m, C)) = O(n \cdot S(n, m, C))$.

Shortest Path Optimality Conditions

Theorem 1. For every pair of nodes $[i,j] \in N \times N$, let d[i,j] represent the length of some directed path from node i to node j satisfying $d[i,i] = 0 \ \forall i \in N$ and $d[i,j] \leq c_{ij} \ \forall (i,j) \in A$. These distances represent shortest path distances if and only if they satisfy

$$d[i,j] \le d[i,k] + d[k,j] \ \forall i,j,k \in N.$$

PROOF:

 \Rightarrow If these distances represent shortest path distances, they satisfy $d[i,j] \le d[i,k] + d[k,j] \ \forall i,j,k \in N$.

 \Leftarrow If a set of distance labels satisfy $d[i,j] \leq d[i,k] + d[k,j] \ \forall i,j,k \in N$, then they represent shortest path distances.

All-Pairs Label-Correcting Algorithm

```
Input: A network G=(N,A) and a vector of arc lengths c\in\mathbb{Z}^A Output: d[i,j] is the length of a shortest path from node i to node j for pairs i and j. d[i,j]\leftarrow\infty \text{ for all } [i,j]\in N\times N d[i,j]\leftarrow0 \text{ for all } i\in N for (i,j)\in A do d[i,j]\leftarrow c_{ij} while \exists (i,j,k) satisfying d[i,j]>d[i,k]+d[k,j] do d[i,j]:=d[i,k]+d[k,j] end while end for
```

Floyd-Warshall Algorithm

- $O(n^3C)$ iteration complexity of algorithm is not appealing(!)
- ullet Given matrix of distances d[i,j], we need to perform n^3 comparisons just to test optimality
- Floyd-Warshall cleverly obtains matrix of shortest path distances within $O(n^3)$ computations

Floyd-Warshall Algorithm

```
Input: A network G = (N, A) and a vector of arc lengths c \in \mathbb{Z}^A
Output: d[i,j] is the length of a shortest path from node i to node j for
  pairs i and j.
  for (i, j) \in N \times N do
     d[i,j] \leftarrow \infty and pred[i,j] \leftarrow 0
  end for
  for i \in N do
     d[i,i] \leftarrow 0
  end for
  for (i, j) \in A do
     d[i,j] \leftarrow c_{ij} and pred[i,j] := i
  end for
  for k=1 to n do
     for [i, j] \in N \times N do
        if d[i, j] > d[i, k] + d[k, j] then
           d[i,j] \leftarrow d[i,k] + d[k,j]
           pred[i, j] \leftarrow pred[k, j]
        end if
     end for
  end for
```

IE411 Lecture 11 12

Proof of Correctness

Claim 1. After iteration k, d[i,j] is the shortest path distance from node i to node j subject to the condition that the path uses only nodes $1, 2, \dots, k$ as internal nodes.

PROOF: (by induction)

IE411 Lecture 11 13

Floyd-Warshall Algorithm

• Complexity?

IE411 Lecture 11 14

Detecting Negative Cost Cycles

Network contains negative cost cycle if

```
\begin{array}{l} -\ d[i,i] < 0 \text{ for some } i \in N \\ -\ d[i,j] < -nC \text{ for some } [i,j] \in N \times N \end{array}
```

- For F-W, simply check d[i, i] < 0 when updating d[i, i].
- How else could we check?