
Graphs and Network Flows
IE411

Lecture 11

Dr. Ted Ralphs



IE411 Lecture 11 1

References for Today’s Lecture

• Required reading

– Sections 21.3

• References

– AMO Chapter 5
– CLRS Chapter 25

1



IE411 Lecture 11 2

Label-Correcting Algorithms

• Generic

– O(n2C) iterations (recall d(j) bounded by nC and −nC)
– No specified method for selecting an arc violating optimality conditions

• Modified

– By repeatedly scanning arcs in a fixed order, we can get a strongly
polynomial time algorithm.

– Practical improvement: Maintain a list of arcs that might violate
optimality conditions
∗ If we decrease d(j), what do we know about reduced lengths of

incoming arcs? outgoing arcs?
∗ Which arcs could violate optimality conditions after a label is

modified?

2



IE411 Lecture 11 3

Special Implementations of Modified Label-Correcting

• FIFO Label-Correcting

– O(mn) is best strongly polynomial-time implementation
– Maintain a queue and examine nodes in FIFO order

• Dequeue Implementation

– a dequeue allows elements to be added or deleted from both front and
back

– always select nodes from front; add previously seen nodes to front, all
others to back

– O(nmC) but performs well in practice for sparse networks

3



IE411 Lecture 11 4

FIFO Label-Correcting Algorithm

Input: A network G = (N, A) and a vector of arc lengths c ∈ ZA

Output: d(i) is the length of a shortest path from node s to node i and
pred(i) is the immediate predecessor of i in an associated shortest paths
tree.
d(s)← 0 and pred(s)← 0
d(j)←∞ for each j ∈ N \ {s}
Q← {s}
while Q 6= ∅ do

Remove the first element i from Q
for (i, j) ∈ A(i) do

if d(j) > d(i) + cij then
d(j)← d(i) + cij

pred(j)← i
if j 6∈ Q then

add j to the end of Q
end if

end if
end for

end while

4



IE411 Lecture 11 5

All-Pairs Shortest Path Problem

• Determine the shortest path distance between every pair of nodes in the
network.

– Assume underlying network is strongly connected
– Assume network does not contain a negative cost cycle

• Algorithms

– Repeated Shortest Path
– All-Pairs Label-Correcting

5



IE411 Lecture 11 6

Repeated Shortest Path Algorithm (Non-Negative Arc
Lengths)

• For each node i ∈ N , solve a single-source shortest path problem with
node i as the source using any appropriate algorithm.

• Complexity: Let S(n,m, C) denote the time required to solve a shortest
path problem with non-negative arc lengths. Then, the complexity is
O(n · S(n,m, C)).

6



IE411 Lecture 11 7

Repeated Shortest Path Algorithm (Negative Arc
Lengths)

• Transform the network into one with non-negative arc lengths.

• For each node i ∈ N , solve a single-source shortest path problem with
node i as the source using any appropriate algorithm.

• Compute the shortest path distances in the original network from the
shortest path distances in the transformed network.

• Complexity: O(nm + n · S(n,m, C)) = O(n · S(n,m, C)).

7



IE411 Lecture 11 8

Shortest Path Optimality Conditions

Theorem 1. For every pair of nodes [i, j] ∈ N × N , let d[i, j] represent
the length of some directed path from node i to node j satisfying d[i, i] =
0 ∀i ∈ N and d[i, j] ≤ cij ∀(i, j) ∈ A. These distances represent shortest
path distances if and only if they satisfy

d[i, j] ≤ d[i, k] + d[k, j] ∀i, j, k ∈ N.

PROOF:
⇒ If these distances represent shortest path distances, they satisfy d[i, j] ≤
d[i, k] + d[k, j] ∀i, j, k ∈ N.

⇐ If a set of distance labels satisfy d[i, j] ≤ d[i, k] + d[k, j] ∀i, j, k ∈ N ,
then they represent shortest path distances.

8



IE411 Lecture 11 9

All-Pairs Label-Correcting Algorithm

Input: A network G = (N, A) and a vector of arc lengths c ∈ ZA

Output: d[i, j] is the length of a shortest path from node i to node j for
pairs i and j.
d[i, j]←∞ for all [i, j] ∈ N ×N
d[i, j]← 0 for all i ∈ N
for (i, j) ∈ A do

d[i, j]← cij

while ∃(i, j, k) satisfying d[i, j] > d[i, k] + d[k, j] do
d[i, j] := d[i, k] + d[k, j]

end while
end for

9



IE411 Lecture 11 10

Floyd-Warshall Algorithm

• O(n3C) iteration complexity of algorithm is not appealing(!)

• Given matrix of distances d[i, j], we need to perform n3 comparisons just
to test optimality

• Floyd-Warshall cleverly obtains matrix of shortest path distances within
O(n3) computations

10



IE411 Lecture 11 11

Floyd-Warshall Algorithm

Input: A network G = (N, A) and a vector of arc lengths c ∈ ZA

Output: d[i, j] is the length of a shortest path from node i to node j for
pairs i and j.
for (i, j) ∈ N ×N do

d[i, j]←∞ and pred[i, j]← 0
end for
for i ∈ N do

d[i, i]← 0
end for
for (i, j) ∈ A do

d[i, j]← cij and pred[i, j] := i
end for
for k = 1 to n do

for [i, j] ∈ N ×N do
if d[i, j] > d[i, k] + d[k, j] then

d[i, j]← d[i, k] + d[k, j]
pred[i, j]← pred[k, j]

end if
end for

end for

11



IE411 Lecture 11 12

Proof of Correctness

Claim 1. After iteration k, d[i, j] is the shortest path distance from node i
to node j subject to the condition that the path uses only nodes 1, 2, · · · , k
as internal nodes.

PROOF: (by induction)

12



IE411 Lecture 11 13

Floyd-Warshall Algorithm

• Complexity?

13



IE411 Lecture 11 14

Detecting Negative Cost Cycles

• Network contains negative cost cycle if

– d[i, i] < 0 for some i ∈ N
– d[i, j] < −nC for some [i, j] ∈ N ×N

• For F-W, simply check d[i, i] < 0 when updating d[i, i].

• How else could we check?

14


