Graphs and Network Flows ISE 411

Lecture 10

Dr. Ted Ralphs

References for Today's Lecture

- Required reading
 - Sections 21.3
- References
 - AMO Chapter 5
 - CLRS Chapter 25

Shortest Path Algorithms

- Special structure ⇒ easy!
 - Special topology: Reaching Algorithm
 - Special cost structure: Dijkstra's Algorithm
- General network with negative cycles ⇒ much harder!
 - Identify a negative cycle if one exists OR
 - Solve the problem if no negative cycle exists

General Label-Correcting Algorithms

Maintain a distance label d(j) for all nodes $j \in N$

- If d(j) is infinite, the algorithm has not found a path joining the source node to node j.
- If d(j) is finite, it is the distance from the source node to that node along some path (upper bound).
- No label is permanent until the algorithm terminates.

Optimality Conditions

Theorem 1. [5.1] For every node $j \in N$, let d(j) denote the length of some directed path from the source node to node j. Then, the numbers d(j) represent the shortest path distances **if and only if** they satisfy the following for all $(i, j) \in A$:

$$d(j) \le d(i) + c_{ij}.$$

Proof:

 (\Rightarrow) If d(j) represent shortest path distances, they satisfy $d(j) \leq d(i) + c_{ij}$, $\forall (i,j) \in A$.

(\Leftarrow) If a set of labels satisfies $d(j) \leq d(i) + c_{ij}$, then they represent shortest path distances.

Distance Labels and Negative Cycles

Claim 1. If the network contains a negative cycle, then no set of distance labels satisfies $d(j) \leq d(i) + c_{ij}$ for all $(i, j) \in A$.

For each arc, we define the reduced arc length c_{ij}^d of an arc (i,j) with respect to distance labels $d(\cdot)$ as $c_{ij}^d = c_{ij} + d(i) - d(j)$.

To prove this claim, we need the following properties.

- **Property 1. [5.2]** 1. For any directed cycle W, $\sum_{(i,j)\in W} c_{ij}^d = \sum_{(i,j)\in W} c_{ij}$.
- 2. For any directed path P from node k to node l, $\sum_{(i,j)\in P} c_{ij}^d = \sum_{(i,j)\in P} c_{ij} + d(k) d(l)$.
- 3. If the vector d represents shortest path distances, then $c_{ij}^d \geq 0$ for every arc $(i,j) \in A$.

Generic Label-Correcting Algorithm

```
Input: A network G=(N,A) and a vector of arc lengths c\in\mathbb{Z}^A Output: d(i) is the length of a shortest path from node s to node i and pred(i) is the immediate predecessor of i in an associated shortest paths tree. d(s) \leftarrow 0 \text{ and } pred(s) \leftarrow 0 d(j) \leftarrow \infty \text{ for each } j \in N - \{s\} while \exists (i,j) \in A such that d(j) > d(i) + c_{ij} do
```

end while

 $d(j) \leftarrow d(i) + c_{ij}$

 $pred(j) \leftarrow i$

Predecessor Graph

- The collection of arcs (pred(j), j) for every finitely labeled node j (except source)
- Directed out-tree rooted at the source that spans all nodes with finite distance labels
- ullet Each distance update using the arc (i,j) produces a new predecessor graph
 - delete the arc (pred(j), j)
 - add the arc (i, j)
- For every arc (i, j) in the predecessor graph $c_{ij}^d \leq 0$.
- When the algorithm terminates, the predecessor graph is a shortest path tree.

Termination

• Will the algorithm terminate in a finite number of iterations?

• What is the complexity of the algorithm?

Detecting Negative Cycles

- Check whether distance label is less than -nC
- Check whether predecessor graph contains a directed cycle