Computational Optimization
ISE 407

Lecture 9

Dr. Ted Ralphs

ISE 407 Lecture 9 1

Reading for this Lecture

e Aho, Hopcroft, and Ullman, Chapter 1

e Miller and Boxer, Chapters 1 and 5

e Fountain, Chapter 4

e ‘“Introduction to High Performance Computing”, V. Eijkhout, Chapter 2.

e ‘“Introduction to High Performance Computing for Scientists and
Engineers,” G. Hager and G. Wellein, Chapter 1.

ISE 407 Lecture 9 2

Parallel Algorithms and Parallel Platforms

A sequential algorithm is a procedure for solving a given (optimization)
problem that executes one instruction at a time, as in the RAM model.

A parallel algorithm is a scheme for performing an equivalent set of
computations that can execute more than one instruction at a time.

Analyzing parallel algorithm is inherently more difficult, since the
assumptions we make about storage and data movement can make
a huge difference.

A parallel platform is a combination of the

— Hardware

— Software

— OS

— Toolchain

— Communication Infrastructure

which enable a given parallel algorithm to be implemented and executed.

Measuring practical performance of a parallel algorithm on a particular
parallel platform is an alternative that is also challenging.

It may be difficult to identify what components are affecting performance.

ISE 407 Lecture 9 3

Parallel Architectures

e There is a wide variety of architectures when it comes to parallel
computers.

e The simplest parallel computer is a single CUP with multiple cores.
e A single computer (compute node) can have multiple CPUs.

e Multiple compute nodes can be connected by a communication
infrastructure that allows them to function as a “cluster’ .

e \We can connect “clusters” into a “grid” with communications happening
over the Internet.

e And so on.

E Bus

Source: https://lwn.net/Articles/250967

ISE 407 Lecture 9

Platform Categories

e High Performance Parallel Computers

— Massively parallel
— Distributed

o “Off the shelf” Parallel Computers

— Small shared memory computers
— Multi-core computers
— GPUs

— Clusters (of multi-core computers)

ISE 407 Lecture 9

The Storage Hierarchy

e |t is clear that the storage hierarchy can become very complex.

e In a multi-core CPU, cache may be shared by groups of cores or each
may have its own (and different levels might be different).

e In a multi-CPU computer, there may be multiple memory controllers or

a single one.

aQ

| LD Lo |
X L: IJ '
L3 | L3

l_I_[

Source: Hager and Wellein, Figure 1.2

P P

LiD LD

L1D

Lo

—k

ISE 407 Lecture 9 6

Distributed versus Shared Memory

e \WWhen we move to analyzing clusters and grids, it becomes much more
important to understand data movement.

e The cost of moving data become mu=ch more pronounced and the
importance of optimizing such data movements become more than just
“icing on the cake.”

e \With respect to a single compute core, we can roughly divide available
memory into that which directly addressable and that which is not.

o Generally speaking, all the RAM associated with a compute node is
addressable by all cores (shared memory).

e The memory that is not directly addressable is generally memory attached
to other compute nodes (distributed memory).

e Accessing shared memory will generally be orders of magnitude faster
than accessing distributed memory.

ISE 407 Lecture 9 7

Processes and Threads

e Although all memory on a compute node is addressable by all cores, a
computer will generally have multiple processes executing simultaneously.

e For security reasons, these processes are assigned separate memory
address spaces by the OS and have no direct means of communicating.

e A process can, however, have multiple threads that execute independently
but share memory.

e In a multi-core system, different threads from the same process can
execute on different cores.

ISE 407 Lecture 9 8

Cache Coherency

A challenge for shared memory architectures is to maintain “cache
coherency.”

Since each core may have its own cache, there may be multiple copies of
the same data.

If a cached copy is over-written, then it becomes “dirty” and other
cached copies are invalidated.

This can lead to inefficiency if different cores are trying to access the
same memory locations simultaneously.

ISE 407 Lecture 9 9

Hyperthreading

e Hyperthreading is a technique for allowing multiple threads to execute
efficiently using the same core.

e When one thread is idle due to a cache miss (i.e., waiting for data to be
retrieved), other threads can be run.

e In practice, this may create speed-ups similar to what one would observe
with multiple cores.

ISE 407 Lecture 9 10

Analysis of Parallel Algorithms

e The analysis of parallel algorithms is more difficult.
e The assumptions of the model make a much bigger difference.

e |t is no longer true that all reasonable models are polynomially equivalent.

ISE 407 Lecture 9

11

The Basic PRAM model

Progoram Control
h’ "
= Unit
Local . Local ~ Local
PO Memory Pl Memory Pn . Memory
- Registers - Registers - Registers

|

|

|

Global Memory

ISE 407 Lecture 9 12

Assumptions of the PRAM model

e This is a synchronous model with shared memory.
e There are a fixed number of cores (bounded).

e All cores execute the same program, but each one can be in a different
place.

e At each time step, each core performs one read, one elementary operation,
and one write.

e Memory access is performed in constant time.
e Cores are not linked directly.

e Communication issues are not considered.

ISE 407 Lecture 9

13

Concurrent Memory Access

e What if two cores try to read/write to/from the same memory location
in the same time step?

e \We have to resolve these conflicts.

e Four possible models:

CREW <= We will use this one (most of the time)
CRCW
EREW
ERCW

ISE 407 Lecture 9

14

Assessment of the PRAM Model(s)

This model is not as “robust” as the RAM model.

However, it allows us to do rigorous analysis.

It is a reasonable model of a small parallel machine.

It is not “scalable.”

It does not model distributed memory or interconnection networks.

How do we fix it?

ISE 407 Lecture 9 15

Distributed PRAM Model

Attempt to model the interconnection network.
Eliminate global memory.
Each core can read or write only from its neighbors’ registers.

This will likely increase the complexity of many algorithms, but is more
realistic and scalable.

ISE 407 Lecture 9

16

What is an interconnection network?

e A graph (directed or undirected)

e The nodes are the processors

e The edges represent direct connections
e Properties and Terms

— Degree of the Network

— Communication Diameter
— Bisection Width

— Processor Neighborhood
— Connectivity Matrix

— Adjacency Matrix

ISE 407 Lecture 9 17

Measures of Goodness

e Communication diameter: The maximum shortest path between two
processors.

e Bisection width: The minimum cut such that the two resulting sets of
processors have the same order of magnitude.

e Connectivity Matrix

e Adjacency Matrix

ISE 407 Lecture 9 18

Bottlenecks

e The communication diameter indicates how long it may take to send
information from one processor to another.

e Thus, it may be the bottleneck in any algorithm in which the data are
initially distributed equally.

e The bisection width is the bottleneck when processors must exchange
large amounts of information.

e The bisection width is a lower bound for sorting.

ISE 407 Lecture 9

19

Connectivity Matrix: Example 1

0 1 2 3

ISE 407 Lecture 9

20

Connectivity Matrix: Example 2

0 1 2 3

ISE 407 Lecture 9

21

2-step Connectivity Matrix
0

ISE 407 Lecture 9 22

N-step Connectivity Matrices

e Indicates the processor pairs that can reach each other in N steps
e Computed using Boolean matrix multiplication

e The corresponding adjacency matrix indicates how many disjoint paths
connect each pair.

0 1 2 3 0 1 2 3
o 1| 1| ol v | |2 |1
1| v v || 1 v v ||z
Al T | J IR RN
3 S S O IR ENREE

ISE 407 Lecture 9

23

P

Pl

Linear Array

ISE 407 Lecture 9

24

—

Pl

Ring

P

ISE 407 Lecture 9

25

Bl

Mesh

P4

P8

P12

Pl P2
| |
| P&
P43 P10
| |
P13 Fl4

ISE 407 Lecture 9

26

Tree
l *_P1 | l
l—* F3 —[
B4
| ! !
' I ; Lo Voo i
FE Fo F10 F11 |[Fll F13 F14 F13

ISE 407 Lecture 9 27

Other Schemes

e Pyramid: A 4-ary tree where each level is connected as a mesh

e Hypercube: Two processors are connected if and only if their ID #'s
differ in exactly one bit.

— Low communications diameter
— High bisection width
— Doesn’t have constant degree

o Perfect Shuffle: Processor i is connected one-way to processor 2i
mod N — 1.

e Others: Star, De Bruijn, Delta, Omega, Butterfly

ISE 407 Lecture 9 28

Asymptotic Analysis of Parallel Algorithm

e In the course of a parallel architecture, small details make a difference.

e Example: broadcasting a unit of data

- @() under the shared-memory CREW model
©(n) under the shared-memory EREW model
©(y/n) under the distributed-memory CREW model on a mesh
©(logn) under the distributed-memory tree model

e Note: These models are architecture dependent

e This is the biggest difference between sequential and parallel complexity
analysis

ISE 407 Lecture 9 29

Cost of a Parallel Algorithm

e In the case of a RAM algorithm, the measure of effectiveness was the
time (number of steps).

e In the PRAM case, we may consider both time and “cost.”

— Running time is the number of steps required in “real time.”
— Parallel cost is the product of running time and number of cores.

e An “optimal” parallel algorithm is one for which the parallel cost function
is of the same order as the sequential running time function.

e The difference between the sequential running time and the parallel cost
is known as parallel overhead.

e |t consists of time steps during which a core is idle or doing something
not required in the parallel algorithm (e.g., moving data).

e For algorithms that are not optimal, the running time decreases with
additional cores, but the cost increases.

ISE 407 Lecture 9 30

Speedup and Parallel Efficiency

e Speedup and parallel efficiency are concepts related to parallel cost.

e Speedup is the ratio of the parallel running time to the sequential running
time.

e Efficiency is the speedup divided by the number of cores.

e Optimal algorithms are those whose speedup is equal to the number of
cores or with a parallel efficiency of 1.

e Essentially, these are algorithms that balance communication and idle
time with time for computation.

ISE 407 Lecture 9

31

Semigroup operations

e Definition: A binary associative operation

(zRyYy)®z=21 (y® 2)

e Typical semigroup operations.

— maximum
— minimum
— sum

— product

- OR

e Can be used to compare parallel architectures.

ISE 407 Lecture 9 32

Semigroup operations example

e RAM Algorithm: Can’t do better than sequential search, which is ©(n).

e Shared-memory PRAM Algorithm
Assumptions: n cores, CREW
Input: An array x = [x1, T2, ..., T2, (2 data elements per core initially)
Output: The smallest entry of X

for (i = 0; i < log2(m); i++){
parallel for (j = 0; j < 2%*(log2(n)-i-1); j++){
read x[2j-1] and x[2j];
write min(x2j-1, x2j);

S Ot s W NN =

ISE 407 Lecture 9 33

Semigroup operations example (cont’d)

e The parallel cost of this implementation is ©(nlgn), so this is not cost
optimal.

e Can we achieve cost optimality?

— Starting with one data element per core, we can't expect a running
time better than ©(Ign).

— The problem is that we are not fully utilizing all the cores.

— Including the idle time, there is an overall increase of the number of
total steps required of Ign.

— How do we improve this situation?

ISE 407 Lecture 9 34

Scaling Up

The problem is that there simply isn't enough data to utilize all the
processing power.

If we had N cores and n > N data elements, what would change?

— Start with n/N data elements per core.

— First apply the sequential algorithm to the n/N elements stored on
each core.

— Then combine the results using the original parallel algorithm.

What should /N be, as a function of n?

— The running time is O(n/N + Ig N).
— The cost is ©(n + NlgN).

What should N be to achieve cost optimality?

ISE 407 Lecture 9 34

Scaling Up

The problem is that there simply isn't enough data to utilize all the
processing power.

If we had N cores and n > N data elements, what would change?

— Start with n/N data elements per core.

— First apply the sequential algorithm to the n/N elements stored on
each core.

— Then combine the results using the original parallel algorithm.

What should /N be, as a function of n?

— The running time is O(n/N + Ig N).
— The cost is ©(n + NlgN).

What should N be to achieve cost optimality?

— We want Nlg N ~ n.
— Taking N =n/lgn is an approximate solution.

ISE 407 Lecture 9 35

The General Principle

e The previous analysis illustrates a general principle.

e When adding more cores, there is a limit based on the size of the input
beyond which we cannot effectively utilize the additional cores.

e We must scale up the input size along with the number of cores in order
to achieve “scalability.”

e We will examine this phenomena in more detail in a future lecture.

ISE 407 Lecture 9

36

Other Benchmark Problems

e Broadcast:

— Send value from one processor to all others
— Limited by diameter

e Sorting:

— Sort a list of values
— Limited by bisection bandwidth

e Semigroup

— Combine values using a binary associative operator
— Requires bandwidth and diameter to be balanced

