
Computational Optimization
ISE 407

Lecture 9

Dr. Ted Ralphs

ISE 407 Lecture 9 1

Reading for this Lecture

• Aho, Hopcroft, and Ullman, Chapter 1

• Miller and Boxer, Chapters 1 and 5

• Fountain, Chapter 4

• “Introduction to High Performance Computing”, V. Eijkhout, Chapter 2.

• “Introduction to High Performance Computing for Scientists and
Engineers,” G. Hager and G. Wellein, Chapter 1.

1

ISE 407 Lecture 9 2

Parallel Algorithms and Parallel Platforms

• A sequential algorithm is a procedure for solving a given (optimization)
problem that executes one instruction at a time, as in the RAM model.

• A parallel algorithm is a scheme for performing an equivalent set of
computations that can execute more than one instruction at a time.

• Analyzing parallel algorithm is inherently more difficult, since the
assumptions we make about storage and data movement can make
a huge difference.

• A parallel platform is a combination of the

– Hardware
– Software
– OS
– Toolchain
– Communication Infrastructure

which enable a given parallel algorithm to be implemented and executed.

• Measuring practical performance of a parallel algorithm on a particular
parallel platform is an alternative that is also challenging.

• It may be difficult to identify what components are affecting performance.

2

ISE 407 Lecture 9 3

Parallel Architectures

• There is a wide variety of architectures when it comes to parallel
computers.

• The simplest parallel computer is a single CUP with multiple cores.

• A single computer (compute node) can have multiple CPUs.

• Multiple compute nodes can be connected by a communication
infrastructure that allows them to function as a “cluster”.

• We can connect “clusters” into a “grid” with communications happening
over the Internet.

• And so on.

Source: https://lwn.net/Articles/250967

3

ISE 407 Lecture 9 4

Platform Categories

• High Performance Parallel Computers

– Massively parallel
– Distributed

• “Off the shelf” Parallel Computers

– Small shared memory computers
– Multi-core computers
– GPUs
– Clusters (of multi-core computers)

4

ISE 407 Lecture 9 5

The Storage Hierarchy

• It is clear that the storage hierarchy can become very complex.

• In a multi-core CPU, cache may be shared by groups of cores or each
may have its own (and different levels might be different).

• In a multi-CPU computer, there may be multiple memory controllers or
a single one.

Source: Hager and Wellein, Figure 1.2

5

ISE 407 Lecture 9 6

Distributed versus Shared Memory

• When we move to analyzing clusters and grids, it becomes much more
important to understand data movement.

• The cost of moving data become mu=ch more pronounced and the
importance of optimizing such data movements become more than just
“icing on the cake.”

• With respect to a single compute core, we can roughly divide available
memory into that which directly addressable and that which is not.

• Generally speaking, all the RAM associated with a compute node is
addressable by all cores (shared memory).

• The memory that is not directly addressable is generally memory attached
to other compute nodes (distributed memory).

• Accessing shared memory will generally be orders of magnitude faster
than accessing distributed memory.

6

ISE 407 Lecture 9 7

Processes and Threads

• Although all memory on a compute node is addressable by all cores, a
computer will generally have multiple processes executing simultaneously.

• For security reasons, these processes are assigned separate memory
address spaces by the OS and have no direct means of communicating.

• A process can, however, have multiple threads that execute independently
but share memory.

• In a multi-core system, different threads from the same process can
execute on different cores.

7

ISE 407 Lecture 9 8

Cache Coherency

• A challenge for shared memory architectures is to maintain “cache
coherency.”

• Since each core may have its own cache, there may be multiple copies of
the same data.

• If a cached copy is over-written, then it becomes “dirty” and other
cached copies are invalidated.

• This can lead to inefficiency if different cores are trying to access the
same memory locations simultaneously.

8

ISE 407 Lecture 9 9

Hyperthreading

• Hyperthreading is a technique for allowing multiple threads to execute
efficiently using the same core.

• When one thread is idle due to a cache miss (i.e., waiting for data to be
retrieved), other threads can be run.

• In practice, this may create speed-ups similar to what one would observe
with multiple cores.

9

ISE 407 Lecture 9 10

Analysis of Parallel Algorithms

• The analysis of parallel algorithms is more difficult.

• The assumptions of the model make a much bigger difference.

• It is no longer true that all reasonable models are polynomially equivalent.

10

ISE 407 Lecture 9 11

The Basic PRAM model

11

ISE 407 Lecture 9 12

Assumptions of the PRAM model

• This is a synchronous model with shared memory.

• There are a fixed number of cores (bounded).

• All cores execute the same program, but each one can be in a different
place.

• At each time step, each core performs one read, one elementary operation,
and one write.

• Memory access is performed in constant time.

• Cores are not linked directly.

• Communication issues are not considered.

12

ISE 407 Lecture 9 13

Concurrent Memory Access

• What if two cores try to read/write to/from the same memory location
in the same time step?

• We have to resolve these conflicts.

• Four possible models:

– CREW ⇐ We will use this one (most of the time)
– CRCW
– EREW
– ERCW

13

ISE 407 Lecture 9 14

Assessment of the PRAM Model(s)

• This model is not as “robust” as the RAM model.

• However, it allows us to do rigorous analysis.

• It is a reasonable model of a small parallel machine.

• It is not “scalable.”

• It does not model distributed memory or interconnection networks.

• How do we fix it?

14

ISE 407 Lecture 9 15

Distributed PRAM Model

• Attempt to model the interconnection network.

• Eliminate global memory.

• Each core can read or write only from its neighbors’ registers.

• This will likely increase the complexity of many algorithms, but is more
realistic and scalable.

15

ISE 407 Lecture 9 16

What is an interconnection network?

• A graph (directed or undirected)

• The nodes are the processors

• The edges represent direct connections

• Properties and Terms

– Degree of the Network
– Communication Diameter
– Bisection Width
– Processor Neighborhood
– Connectivity Matrix
– Adjacency Matrix

16

ISE 407 Lecture 9 17

Measures of Goodness

• Communication diameter: The maximum shortest path between two
processors.

• Bisection width: The minimum cut such that the two resulting sets of
processors have the same order of magnitude.

• Connectivity Matrix

• Adjacency Matrix

17

ISE 407 Lecture 9 18

Bottlenecks

• The communication diameter indicates how long it may take to send
information from one processor to another.

• Thus, it may be the bottleneck in any algorithm in which the data are
initially distributed equally.

• The bisection width is the bottleneck when processors must exchange
large amounts of information.

• The bisection width is a lower bound for sorting.

18

ISE 407 Lecture 9 19

Connectivity Matrix: Example 1

19

ISE 407 Lecture 9 20

Connectivity Matrix: Example 2

20

ISE 407 Lecture 9 21

2-step Connectivity Matrix

21

ISE 407 Lecture 9 22

N-step Connectivity Matrices

• Indicates the processor pairs that can reach each other in N steps

• Computed using Boolean matrix multiplication

• The corresponding adjacency matrix indicates how many disjoint paths
connect each pair.

22

ISE 407 Lecture 9 23

Linear Array

23

ISE 407 Lecture 9 24

Ring

24

ISE 407 Lecture 9 25

Mesh

25

ISE 407 Lecture 9 26

Tree

26

ISE 407 Lecture 9 27

Other Schemes

• Pyramid: A 4-ary tree where each level is connected as a mesh

• Hypercube: Two processors are connected if and only if their ID #’s
differ in exactly one bit.

– Low communications diameter
– High bisection width
– Doesn’t have constant degree

• Perfect Shuffle: Processor i is connected one-way to processor 2i
mod N − 1.

• Others: Star, De Bruijn, Delta, Omega, Butterfly

27

ISE 407 Lecture 9 28

Asymptotic Analysis of Parallel Algorithm

• In the course of a parallel architecture, small details make a difference.

• Example: broadcasting a unit of data

– Θ(1) under the shared-memory CREW model
– Θ(n) under the shared-memory EREW model
– Θ(

√
n) under the distributed-memory CREW model on a mesh

– Θ(log n) under the distributed-memory tree model

• Note: These models are architecture dependent

• This is the biggest difference between sequential and parallel complexity
analysis

28

ISE 407 Lecture 9 29

Cost of a Parallel Algorithm

• In the case of a RAM algorithm, the measure of effectiveness was the
time (number of steps).

• In the PRAM case, we may consider both time and “cost.”

– Running time is the number of steps required in “real time.”
– Parallel cost is the product of running time and number of cores.

• An “optimal” parallel algorithm is one for which the parallel cost function
is of the same order as the sequential running time function.

• The difference between the sequential running time and the parallel cost
is known as parallel overhead.

• It consists of time steps during which a core is idle or doing something
not required in the parallel algorithm (e.g., moving data).

• For algorithms that are not optimal, the running time decreases with
additional cores, but the cost increases.

29

ISE 407 Lecture 9 30

Speedup and Parallel Efficiency

• Speedup and parallel efficiency are concepts related to parallel cost.

• Speedup is the ratio of the parallel running time to the sequential running
time.

• Efficiency is the speedup divided by the number of cores.

• Optimal algorithms are those whose speedup is equal to the number of
cores or with a parallel efficiency of 1.

• Essentially, these are algorithms that balance communication and idle
time with time for computation.

30

ISE 407 Lecture 9 31

Semigroup operations

• Definition: A binary associative operation

(x⊗ y)⊗ z = x⊗ (y ⊗ z)

• Typical semigroup operations.

– maximum
– minimum
– sum
– product
– OR

• Can be used to compare parallel architectures.

31

ISE 407 Lecture 9 32

Semigroup operations example

• RAM Algorithm: Can’t do better than sequential search, which is Θ(n).

• Shared-memory PRAM Algorithm
Assumptions: n cores, CREW
Input: An array x = [x1, x2, ..., x2n] (2 data elements per core initially)
Output: The smallest entry of X

1 for (i = 0; i < log2(n); i++){

2 parallel for (j = 0; j < 2**(log2(n)-i-1); j++){

3 read x[2j-1] and x[2j];

4 write min(x2j-1, x2j);

5 }

6 }

32

ISE 407 Lecture 9 33

Semigroup operations example (cont’d)

• The parallel cost of this implementation is Θ(n lg n), so this is not cost
optimal.

• Can we achieve cost optimality?

– Starting with one data element per core, we can’t expect a running
time better than Θ(lg n).

– The problem is that we are not fully utilizing all the cores.
– Including the idle time, there is an overall increase of the number of

total steps required of lg n.
– How do we improve this situation?

33

ISE 407 Lecture 9 34

Scaling Up

• The problem is that there simply isn’t enough data to utilize all the
processing power.

• If we had N cores and n > N data elements, what would change?

– Start with n/N data elements per core.
– First apply the sequential algorithm to the n/N elements stored on

each core.
– Then combine the results using the original parallel algorithm.

• What should N be, as a function of n?

– The running time is Θ(n/N + lgN).
– The cost is Θ(n + N lgN).

• What should N be to achieve cost optimality?

34

ISE 407 Lecture 9 34

Scaling Up

• The problem is that there simply isn’t enough data to utilize all the
processing power.

• If we had N cores and n > N data elements, what would change?

– Start with n/N data elements per core.
– First apply the sequential algorithm to the n/N elements stored on

each core.
– Then combine the results using the original parallel algorithm.

• What should N be, as a function of n?

– The running time is Θ(n/N + lgN).
– The cost is Θ(n + N lgN).

• What should N be to achieve cost optimality?

– We want N lgN ≈ n.
– Taking N = n/ lg n is an approximate solution.

34

ISE 407 Lecture 9 35

The General Principle

• The previous analysis illustrates a general principle.

• When adding more cores, there is a limit based on the size of the input
beyond which we cannot effectively utilize the additional cores.

• We must scale up the input size along with the number of cores in order
to achieve “scalability.”

• We will examine this phenomena in more detail in a future lecture.

35

ISE 407 Lecture 9 36

Other Benchmark Problems

• Broadcast:

– Send value from one processor to all others
– Limited by diameter

• Sorting:

– Sort a list of values
– Limited by bisection bandwidth

• Semigroup

– Combine values using a binary associative operator
– Requires bandwidth and diameter to be balanced

36

