
Computational Optimization
ISE407

Lecture 7

Dr. Ted Ralphs



ISE 407 Lecture 7 1

Readings for Today’s Lecture

• Miller and Boxer, Chapters 2 and 3.

• Aho, Hopcroft, and Ullman, Sections 2.5–2.9.

• R. Sedgewick, Algorithms in C++ (Third Edition), 1998.

1



ISE 407 Lecture 7 2

Recursion

• A recursive function is one that calls itself.

• There are two basic types of recursive functions.

– A linear recursion calls itself once.
– A branching recursion calls itself two or more times.

• Examples of linear recursion

– Euclid’s algorithm
– Binary search

2



ISE 407 Lecture 7 3

Properties of Recursive Algorithms

• Generally speaking, recursive algorithms should have the following two
properties to be guarantee well-defined termination.

– They should solve an explicit base case.
– Each recursive call should be made with a smaller input size.

• All recursive algorithms have an associated tree that can be used to
diagram the function calls.

• Execution of the program essentially requires traversal of the tree.

• By adding up the number of steps at each node of the tree, we can
compute the running time.

• We will revisit trees later in the course.

3



ISE 407 Lecture 7 4

Divide, Conquer, and Combine

• Many recursive algorithms arise from employment of a divide-and-conquer
approach.

• This means breaking a larger problem into pieces that can be solved
independently.

• The solutions to the various pieces may then have to recombined in some
way.

• More accurately, these are divide, conquer, and combine algorithms.

• Such algorithms have natural implementations using branching
recursions.

• Example: Merge sort

– Divide the list in half.
– Sort each half (recursively).
– Merge the two halves together.

• The running time depends on how we do the merging.

4



ISE 407 Lecture 7 5

Implementing Merge Sort

• Here is the subroutine for implementing a basic merge sort.

• To sort an entire array the call would be MergeSort(array, 0, length) .

MergeSort(list, beg, end)

if beg < end:

mid = (beg + end)/2

MergeSort(list, beg, mid)

MergeSort(list, mid + 1, end - mid)

Merge(list, beg, mid, end)

5



ISE 407 Lecture 7 6

Implementing Merge

• There are many ways to implement the merge, but here is one simple
one.

• Note that this involves copying over the elements of the array.

Merge(list, beg, end, mid)

temp1 = list[beg:mid + 1]

temp2 = list[mid + 1:end]

i, j = 0, 0

for k in range(end - beg)

if i == mid - beg:

list[k] = temp1[i]; i+=1

continue

if j == end - mid:

list[k] = temp2[j]; j+=1

continue

if temp1[i] < temp2[j]:

list[k] = temp1[i]; i+=1

else:

list[k] = temp2[j]; j+=1

6



ISE 407 Lecture 7 7

Proving Correctness

• As we mentioned earlier, there is a natural connection between induction
and recursion.

• Most recursive algorithms can be proven by induction in a very natural
way.

• Merge Sort

– Assuming the merge is done correctly, correctness of the main
subroutine is “obvious.”

– It can be shown formally by induction.
– To show the merge works correctly, we can use a loop invariant.
– What is the loop invariant in the merge subroutine?

7



ISE 407 Lecture 7 8

Aside: Some Simple Optimization

• Handling small arrays

• Eliminating copying (reduce memory requirements)

• Using sentinels

Merge(list, beg, end, mid)

temp1 = list[beg:mid + 1]

temp2 = list[mid + 1:end]

temp1[mid - beg +1] = MAXINT

temp2[end - mid] = MAXINT

i, j = 0, 0

for k in range(end - beg)

if temp1[i] < temp2[j]:

list[k] = temp1[i]; i+=1

else:

list[k] = temp2[j]; j+=1

8



ISE 407 Lecture 7 9

Analyzing Merge Sort

• Suppose the running time of merge sort is given by T .

• We analyze each piece of the algorithm separately.

– Divide: This operation involves finding the midpoint of the array,
which is in Θ(1).

– Conquer: We recursively solve two subproblems, each of size n/2,
which is 2T (n/2).

– Combine: The running time of the merge subroutine is in Θ(n).

• So T satisfies the following recurrence.

T (n) =

{
Θ(1) if n = 1

2T (n/2) + Θ(n) if n > 1

• How do we figure out what T is?

9



ISE 407 Lecture 7 10

Analyzing Recurrences

• In the last slide, we analyzed merge sort using two different methods.

• General methods for analyzing recurrences

– Telescoping
– Build a recursion tree.
– Solve analytically.
– Make a guess and prove that it’s right (usually with induction).
– Use the Master Theorem.

• Note that when we analyze a recurrence, we may not get or need an
exact answer.

• We may prove the running time is in O(f) or Θ(f) for some simpler
functionf .

• When taking the ratio of two integers, it usually doesn’t matter whether
we round up or down.

10



ISE 407 Lecture 7 11

A Few Examples

• This recurrence arises in algorithms that loop through the input to
eliminate one item.

T (n) =

{
1 n = 1

T (n− 1) + n n > 1

• This recurrence arises in algorithms that halve the input in one step.

T (n) =

{
1 n = 1

T (n/2) + 1 n > 1

• This recurrence arises in algorithms that halve the input in one step, but
have to scan through the data at each step.

T (n) =

{
1 n = 1

T (n/2) + n n > 1

11



ISE 407 Lecture 7 12

The Master Theorem

• Most recurrences that we will be interested in are of the form

T (n) =

{
1 n = 1

aT (n/b) + f(n) n > 1

• The Master Theorem tells us how to analyze recurrences of this form.

– If f ∈ O(nlogb a−ε), for some constant ε > 0, then T ∈ Θ(nlogb a).
– If f ∈ Θ(nlogb a), then T ∈ Θ(nlogb a lg n).
– If f ∈ Ω(nlogb a+ε), for some constant ε > 0, and if af(n/b) ≤ cf(n)

for some constant c < 1 and n > n0, then T ∈ Θ(f).

• How do we interpret this?

12



ISE 407 Lecture 7 13

A Few More Examples

• This recurrence arises in algorithms that partition the input in one step,
but then make recursive calls on both pieces.

T (n) =

{
1 n = 1

2T (n/2) + 1 n > 1

• This recurrence arises in algorithms that scan through the data at each
step, divide it in half and then make recursive calls on each piece.

T (n) =

{
1 n = 1

2T (n/2) + n n > 1

• We can analyze these using the Master Theorem.

13



ISE 407 Lecture 7 14

Recursion and Complexity

• Many algorithms can be expressed very naturally using recursion (whether
it should be used in implementation is another question).

• Example: SAT Problem

– Recursion is a natural way to express the naive enumeration algorithm
for solving the SAT Problem.

– We reduce the original problem of size n to two subproblems of size
n− 1 by setting x1 to either TRUE or FALSE.

– By recursively solving these two subproblems, we solve the original
problem.

• Recursion can also be used as a way of building up classes of functions.

• Computability theory (also called recursion theory) is a theory related to
complexity theory in which recursion is a central concept.

14



ISE 407 Lecture 7 15

The Call Stack

• The call stack of a program keeps track of the current sequence of
function calls.

• When a new function call is made, data for the current one is saved on
the stack (recall the stack memory we discussed earlier).

• When a function call returns, it returns to the next function on the call
stack.

• The stack depth is the number of function calls on the stack at any one
time and is limited essentially by the availability of stack memory.

• In a recursive program, the stack depth can get very large.

• This can create memory problems, even for simple recursive programs.

• There is also an overhead associated with each function call.

15



ISE 407 Lecture 7 16

Iterative Algorithms

• All recursive algorithms have iterative counterparts.

• Essentially, the iterative version must manually replicate the call stack
data structure.

• In the case of linear recursion, this is easy.

– Example: Binary search.

• In the case of a branching recursion, it’s not as easy.

– Example: Merge sort.

• The advantage of the iterative counterpart is that it usually saves memory
and the overhead of function calls.

• The recursive version is usually much easier to implement, but only
because it exploits the automated data structures provided by the
compiler.

• These data structures can be costly.

16


