
Computational Methods in Optimization
IE496

Lecture 27

Dr. Ted Ralphs

ISE 407 Lecture 27 1

Branch and Bound

• Branch and bound is the most commonly-used algorithm for solving
MILPs.

• It is a divide and conquer approach.

• Suppose F is the feasible region for some MILP and we wish to solve
minx∈F c

>x.

• Consider a partition of F into subsets F1, . . . Fk. Then

min
x∈F

c>x = min
{1≤i≤k}

{min
x∈Fi

c>x}

• In other words, we can optimize over each subset separately.

• Idea: If we can’t solve the original problem directly, we might be able to
solve the smaller subproblems recursively.

• Dividing the original problem into subproblems is called branching.

• Taken to the extreme, this scheme is equivalent to complete enumeration.

1

ISE 407 Lecture 27 2

Branch and Bound

• Next, we discuss the role of bounding.

• For the rest of the lecture, assume all variables have finite upper and
lower bounds.

• Any feasible solution to the problem provides an upper bound u(F) on
the optimal solution value.

• We can use approximate methods to obtain an upper bound.

• Idea: After branching, try to obtain a lower bound b(Fi) on the optimal
solution value for each of the subproblems.

• If b(Fi) ≥ u(F), then we don’t need to consider subproblem i.

• One easy way to obtain a lower bound is by solving the LP relaxation
obtained by dropping the integrality constraints.

2

ISE 407 Lecture 27 3

LP-based Branch and Bound

• In LP-based branch and bound, we first solve the LP relaxation of the
original problem. The result is one of the following:

1. The LP is infeasible ⇒ MILP is infeasible.
2. We obtain a feasible solution for the MILP ⇒ optimal solution.
3. We obtain an optimal solution to the LP that is not feasible for the

MILP ⇒ lower bound.

• In the first two cases, we are finished.

• In the third case, we must branch and recursively solve the resulting
subproblems.

3

ISE 407 Lecture 27 4

Branching in LP-based Branch and Bound

• The most common way to branch is as follows:

– Select a variable i whose value x̂i is fractional in the LP solution.
– Create two subproblems.
∗ In one subproblem, impose the constraint xi ≤ bx̂ic.
∗ In the other subproblem, impose the constraint xi ≥ dx̂ie.

• Such a method of branching is called a branching rule.

• Why is this a valid branching rule?

• What does it mean in a 0-1 integer program?

4

ISE 407 Lecture 27 5

Continuing the Algorithm After Branching

• After branching, we solve each of the subproblems recursively.

• Now we have an additional factor to consider.

• If the optimal solution value to the LP relaxation is greater than the
current upper bound, we need not consider the subproblem further.

• This is the key to the efficiency of the algorithm.

• Terminology

– If we picture the subproblems graphically, they form a search tree.
– Each subproblem is linked to its parent and eventually to its children.
– Eliminating a problem from further consideration is called pruning.
– The act of bounding and then branching is called processing.
– A subproblem that has not yet been considered is called a candidate

for processing.
– The set of candidates for processing is called the candidate list.

5

ISE 407 Lecture 27 6

LP-based Branch and Bound Algorithm

1. To start, derive an upper bound U using a heuristic method.

2. Put the original problem on the candidate list.

3. Select a problem S from the candidate list and solve the LP relaxation
to obtain the bound b(S).

• If the LP is infeasible ⇒ node can be pruned.
• Otherwise, if b(S) ≥ U ⇒ node can be pruned.
• Otherwise, if b(S) < U and the solution is feasible for the MILP ⇒

set U ← b(S).
• Otherwise, branch and add the new subproblem to the candidate list.

4. If the candidate list in nonempty, go to Step 2. Otherwise, the algorithm
is completed.

6

ISE 407 Lecture 27 7

Choices in Branch and Bound

• Selecting the next candidate to process.

– “Best-first” always chooses the candidate with the lowest lower bound.
– This rule minimizes the size of the tree (why?).
– There may be practical reasons to deviate from this rule.

• Choosing a branching rule.

– Branching wisely is extremely important.
– A “poor” branching can slow the algorithm significantly.
– We will cover methods of branching in detail in IE418.

• There are also alternative methods of lower bounding, although LP
relaxation is the most common.

7

ISE 407 Lecture 27 8

The Importance of Formulation

• The most vital aspect of branch and bound is obtaining “good” lower
bounds.

• In this respect, not all formulations are created equal.

• Choosing the right one is critical.

• A typical MILP can have many alternative formulations.

• Each formulation corresponds to a different polyhedron enclosing the
integer points that are feasible for the problem.

• The more closely the polyhedron approximates the convex hull of the
integer solutions, the better the bound will be.

8

ISE 407 Lecture 27 9

Example: Facility Location Problem

• We are given n potential facility locations and m customers.

• There is a fixed cost cj of opening facility j.

• There is a cost dij associated with serving customer i from facility j.

• We have two sets of binary variables.

– yj is 1 if facility j is opened, 0 otherwise.
– xij is 1 if customer i is served by facility j, 0 otherwise.

• Here is one formulation:

min

n∑
j=1

cjyj +

m∑
i=1

n∑
j=1

dijxij

s.t.

n∑
j=1

xij = 1 ∀i

m∑
i=1

xij ≤ myj ∀j

xij, yj ∈ {0, 1}∀i, j

9

ISE 407 Lecture 27 10

Example: Facility Location Problem

• Here is another formulation for the same problem:

min

n∑
j=1

cjyj +

m∑
i=1

n∑
j=1

dijxij

s.t.

n∑
j=1

xij = 1 ∀i

xij ≤ yj ∀i, j
xij, yj ∈ {0, 1} ∀i, j

• Notice that the set of integer solutions contained in each of the polyhedra
is the same (why?).

• However, the second polyhedra strictly includes the first one.

• Therefore, the second polyhedra will yield better lower bounds and be
better for branch and bound.

• Notice that the second formulation includes more constraints, but will
likely solve more quickly.

10

ISE 407 Lecture 27 11

Formulation Strength and Ideal Formulations

• Consider two formulations A and B for the same ILP.

• Denote the corresponding feasible regions for their LP relaxations as PA
and PB.

• Formulation A is said to be at least as strong as formulation B if
PA ⊆ PB.

• If the inclusion is strict, then A is stronger than B.

• If F is the set of all feasible integer solutions for the ILP, then we must
have conv(F) ⊆ PA (why?).

• A is ideal if conv(F) = PA

11

ISE 407 Lecture 27 12

Strengthening Formulations

• Often, a given formulation can be strengthened with additional
inequalities satisfied by all feasible integer solutions.

• Example: The Perfect Matching Problem

– We are given a set of n people that need to paired in teams of two.
– Let cij represent the “cost” of the team formed by person i and person
j.

– We wish to minimize cost over all teams.
– We can represent this problem on an undirected graph G = (N,E).
– The nodes represent the people and the edges represent pairings.
– We have xe = 1 if the endpoints of e are matched, xe = 0 otherwise.

min
∑

e={i,j}∈E

cexe

s.t.
∑

{j|{i,j}∈E}

xij = 1, ∀i ∈ N

xe ∈ {0, 1}, ∀e = {i, j} ∈ E.

12

ISE 407 Lecture 27 13

Valid Inequalities for Matching

• Consider the graph on the left above.

• The optimal perfect matching has value L+ 2.

• The optimal solution to the LP relaxation has value 3.

• This formulation can be extremely weak.

• Add the valid inequality x24 + x35 ≥ 1.

• Every perfect matching satisfies this inequality.

13

ISE 407 Lecture 27 14

The Odd Set Inequalities

• We can generalize the inequality from the last slide.

• Consider the cut S corresponding to any odd set of nodes.

• The cutset corresponding to S is

δ(S) = {{i, j} ∈ E|i ∈ s, j 6∈ S} .

• An odd cutset is any δ(S) for which |S| is odd.

• Note that every perfect matching contains at least one edge from every
odd cutset.

• Hence, each odd cutset of induces a possible valid inequality.∑
e∈δ(S)

xe ≥ 1, S ⊂ N, |S|odd.

14

ISE 407 Lecture 27 15

Using the New Formulation

• If we add all of the odd set inequalities, the new formulation is ideal.

• However, the number of inequalities is exponential in size.

• Only a small number of these inequalities will be active at the optimal
solution.

• Recall the concept of a constraint generation algorithm.

• We can generate these inequalities on the fly.

• This can be done efficiently.

15

ISE 407 Lecture 27 16

Constraint Generation Algorithm for Matching

1. Solve the initial LP relaxation.

2. If the solution is feasible, STOP.

3. Otherwise, look for a violated odd set inequality.

4. Add the inequality and reoptimize from the current basis.

5. Go to Step 2.

16

ISE 407 Lecture 27 17

Branch and Cut Algorithms

• If we combine constraint generation with branch and bound, we get
branch and cut.

• The relaxation at each node is strengthened using valid inequalities.

• This increases the lower bound and improves efficiency.

• Branch and cut is the current state of the art for solving ILPs.

17

ISE 407 Lecture 27 18

The Traveling Salesman Problem

• We are given a set N of customers, along with a cost cij associated with
traveling between customers i and j.

• We want to order the customers so that the cost of visiting all customers
in the specified order and then returning to the starting point is
minimized.

• We consider an undirected graph G = (N,E) where each edge {i, j}
has associated cost cij.

• Our problem is to find a minimum cost Hamiltonian tour in this graph.

• Integer programming formulation:

min
∑
e∈E

cexe (1)

s.t.
∑

{j|{i,j}∈E}

xe = 2 ∀i ∈ N, (2)∑
{i,j}∈E
i∈S,j 6∈S

xe ≥ 2 ∀S ⊆ N, |S| > 2, (3)

xe ∈ {0, 1} ∀e ∈ E. (4)

18

ISE 407 Lecture 27 19

Solving the Traveling Salesman Problem

• Constraints (??) are called the subtour elimination constraints.

• Once again, we see that the number of these constraints is exponential.

• In this case, however, the formulation is not ideal—we must use branch
and cut.

• We can solve the LP relaxation by using constraint generation.

– Solve the LP without constraints (??) to obtain x̂.
– Construct a network by associating the capacity x̂e with each edge e.
– If the minimum cut in this network has capacity < 2, this corresponds

to a violated subtour elimination constraint. Add the constraint to the
relaxation and resolve.

– If the minimum cut in this network has capacity ≥ 2, then all
constraints (??) are satisfied and the relaxation is solved.

• We can now embed this subroutine inside a branch and bound algorithm
to solve the TSP.

19

ISE 407 Lecture 27 20

A Branch and Cut Algorithm for the TSP

• At each node in the search tree, solve the relaxation (??)-(??) along
with the constraints imposed by branching.

• This LP can be solved using the previously discussed constraint generation
algorithm.

• If the optimal solution to the relaxation is not integral, then branch on
some fractional variable and continue.

• This branch and cut algorithm will solve reasonably sized instances of
the TSP.

20

ISE 407 Lecture 27 21

Gomory Inequalities

• The Gomory procedure is a generic procedure for generating valid
inequalities for mixed-integer linear programs.

• It assume no special problem structure.

• Consider a pure integer program with feasible region P represented in
standard form.

• For a given u ∈ Rm, we have that uAx = ub for all x ∈ P ∩ Zn.

• Because x ≥ 0 for all x ∈ P ∩ Zn, it follows that

buAcx ≤ ub ∀x ∈ P ∩ Zn.

• Since buAc ∈ Zn, it finally follows that

buAcx ≤ bubc ∀x ∈ P ∩ Zn.

• This last inequality is called a Gomory inequality.

21

ISE 407 Lecture 27 22

Generating Gomory Inequalities

• Gomory inequalities are easy to generate in LP-based branch and bound.

• If the solution to the current LP relaxation is not feasible, then we must
have (B−1b)i 6∈ Z for some i between 1 and m.

• Taking u to be the ith row of B−1, we see that

xl +
∑
j∈NB

buajcxj ≤ bubc, ∀x ∈ P ∩ Zn,

where

– l is the index of the ith basic variable,
– NB is the set of indices of the nonbasic variables, and
– aj is the jth column of A.

• Eliminating xl from the above inequality using the equation uAx = ub
for all x ∈ P ∩ Zn, we obtain∑

j∈NB

(uaj − buajc)xj ≥ ub− bubc,

22

