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Branch and Bound

• Branch and bound is the most commonly-used algorithm for solving
MILPs.

• It is a divide and conquer approach.

• Suppose F is the feasible region for some MILP and we wish to solve
minx∈F c

>x.

• Consider a partition of F into subsets F1, . . . Fk. Then

min
x∈F

c>x = min
{1≤i≤k}

{min
x∈Fi

c>x}

• In other words, we can optimize over each subset separately.

• Idea: If we can’t solve the original problem directly, we might be able to
solve the smaller subproblems recursively.

• Dividing the original problem into subproblems is called branching.

• Taken to the extreme, this scheme is equivalent to complete enumeration.
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Branch and Bound

• Next, we discuss the role of bounding.

• For the rest of the lecture, assume all variables have finite upper and
lower bounds.

• Any feasible solution to the problem provides an upper bound u(F ) on
the optimal solution value.

• We can use approximate methods to obtain an upper bound.

• Idea: After branching, try to obtain a lower bound b(Fi) on the optimal
solution value for each of the subproblems.

• If b(Fi) ≥ u(F ), then we don’t need to consider subproblem i.

• One easy way to obtain a lower bound is by solving the LP relaxation
obtained by dropping the integrality constraints.
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LP-based Branch and Bound

• In LP-based branch and bound, we first solve the LP relaxation of the
original problem. The result is one of the following:

1. The LP is infeasible ⇒ MILP is infeasible.
2. We obtain a feasible solution for the MILP ⇒ optimal solution.
3. We obtain an optimal solution to the LP that is not feasible for the

MILP ⇒ lower bound.

• In the first two cases, we are finished.

• In the third case, we must branch and recursively solve the resulting
subproblems.
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Branching in LP-based Branch and Bound

• The most common way to branch is as follows:

– Select a variable i whose value x̂i is fractional in the LP solution.
– Create two subproblems.
∗ In one subproblem, impose the constraint xi ≤ bx̂ic.
∗ In the other subproblem, impose the constraint xi ≥ dx̂ie.

• Such a method of branching is called a branching rule.

• Why is this a valid branching rule?

• What does it mean in a 0-1 integer program?
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Continuing the Algorithm After Branching

• After branching, we solve each of the subproblems recursively.

• Now we have an additional factor to consider.

• If the optimal solution value to the LP relaxation is greater than the
current upper bound, we need not consider the subproblem further.

• This is the key to the efficiency of the algorithm.

• Terminology

– If we picture the subproblems graphically, they form a search tree.
– Each subproblem is linked to its parent and eventually to its children.
– Eliminating a problem from further consideration is called pruning.
– The act of bounding and then branching is called processing.
– A subproblem that has not yet been considered is called a candidate

for processing.
– The set of candidates for processing is called the candidate list.
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LP-based Branch and Bound Algorithm

1. To start, derive an upper bound U using a heuristic method.

2. Put the original problem on the candidate list.

3. Select a problem S from the candidate list and solve the LP relaxation
to obtain the bound b(S).

• If the LP is infeasible ⇒ node can be pruned.
• Otherwise, if b(S) ≥ U ⇒ node can be pruned.
• Otherwise, if b(S) < U and the solution is feasible for the MILP ⇒

set U ← b(S).
• Otherwise, branch and add the new subproblem to the candidate list.

4. If the candidate list in nonempty, go to Step 2. Otherwise, the algorithm
is completed.
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Choices in Branch and Bound

• Selecting the next candidate to process.

– “Best-first” always chooses the candidate with the lowest lower bound.
– This rule minimizes the size of the tree (why?).
– There may be practical reasons to deviate from this rule.

• Choosing a branching rule.

– Branching wisely is extremely important.
– A “poor” branching can slow the algorithm significantly.
– We will cover methods of branching in detail in IE418.

• There are also alternative methods of lower bounding, although LP
relaxation is the most common.
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The Importance of Formulation

• The most vital aspect of branch and bound is obtaining “good” lower
bounds.

• In this respect, not all formulations are created equal.

• Choosing the right one is critical.

• A typical MILP can have many alternative formulations.

• Each formulation corresponds to a different polyhedron enclosing the
integer points that are feasible for the problem.

• The more closely the polyhedron approximates the convex hull of the
integer solutions, the better the bound will be.
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Example: Facility Location Problem

• We are given n potential facility locations and m customers.

• There is a fixed cost cj of opening facility j.

• There is a cost dij associated with serving customer i from facility j.

• We have two sets of binary variables.

– yj is 1 if facility j is opened, 0 otherwise.
– xij is 1 if customer i is served by facility j, 0 otherwise.

• Here is one formulation:

min

n∑
j=1

cjyj +

m∑
i=1

n∑
j=1

dijxij

s.t.

n∑
j=1

xij = 1 ∀i

m∑
i=1

xij ≤ myj ∀j

xij, yj ∈ {0, 1}∀i, j
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Example: Facility Location Problem

• Here is another formulation for the same problem:

min

n∑
j=1

cjyj +

m∑
i=1

n∑
j=1

dijxij

s.t.

n∑
j=1

xij = 1 ∀i

xij ≤ yj ∀i, j
xij, yj ∈ {0, 1} ∀i, j

• Notice that the set of integer solutions contained in each of the polyhedra
is the same (why?).

• However, the second polyhedra strictly includes the first one.

• Therefore, the second polyhedra will yield better lower bounds and be
better for branch and bound.

• Notice that the second formulation includes more constraints, but will
likely solve more quickly.
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Formulation Strength and Ideal Formulations

• Consider two formulations A and B for the same ILP.

• Denote the corresponding feasible regions for their LP relaxations as PA
and PB.

• Formulation A is said to be at least as strong as formulation B if
PA ⊆ PB.

• If the inclusion is strict, then A is stronger than B.

• If F is the set of all feasible integer solutions for the ILP, then we must
have conv(F ) ⊆ PA (why?).

• A is ideal if conv(F ) = PA
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Strengthening Formulations

• Often, a given formulation can be strengthened with additional
inequalities satisfied by all feasible integer solutions.

• Example: The Perfect Matching Problem

– We are given a set of n people that need to paired in teams of two.
– Let cij represent the “cost” of the team formed by person i and person
j.

– We wish to minimize cost over all teams.
– We can represent this problem on an undirected graph G = (N,E).
– The nodes represent the people and the edges represent pairings.
– We have xe = 1 if the endpoints of e are matched, xe = 0 otherwise.

min
∑

e={i,j}∈E

cexe

s.t.
∑

{j|{i,j}∈E}

xij = 1, ∀i ∈ N

xe ∈ {0, 1}, ∀e = {i, j} ∈ E.
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Valid Inequalities for Matching

• Consider the graph on the left above.

• The optimal perfect matching has value L+ 2.

• The optimal solution to the LP relaxation has value 3.

• This formulation can be extremely weak.

• Add the valid inequality x24 + x35 ≥ 1.

• Every perfect matching satisfies this inequality.
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The Odd Set Inequalities

• We can generalize the inequality from the last slide.

• Consider the cut S corresponding to any odd set of nodes.

• The cutset corresponding to S is

δ(S) = {{i, j} ∈ E|i ∈ s, j 6∈ S} .

• An odd cutset is any δ(S) for which |S| is odd.

• Note that every perfect matching contains at least one edge from every
odd cutset.

• Hence, each odd cutset of induces a possible valid inequality.∑
e∈δ(S)

xe ≥ 1, S ⊂ N, |S|odd.
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Using the New Formulation

• If we add all of the odd set inequalities, the new formulation is ideal.

• However, the number of inequalities is exponential in size.

• Only a small number of these inequalities will be active at the optimal
solution.

• Recall the concept of a constraint generation algorithm.

• We can generate these inequalities on the fly.

• This can be done efficiently.
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Constraint Generation Algorithm for Matching

1. Solve the initial LP relaxation.

2. If the solution is feasible, STOP.

3. Otherwise, look for a violated odd set inequality.

4. Add the inequality and reoptimize from the current basis.

5. Go to Step 2.
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Branch and Cut Algorithms

• If we combine constraint generation with branch and bound, we get
branch and cut.

• The relaxation at each node is strengthened using valid inequalities.

• This increases the lower bound and improves efficiency.

• Branch and cut is the current state of the art for solving ILPs.
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The Traveling Salesman Problem

• We are given a set N of customers, along with a cost cij associated with
traveling between customers i and j.

• We want to order the customers so that the cost of visiting all customers
in the specified order and then returning to the starting point is
minimized.

• We consider an undirected graph G = (N,E) where each edge {i, j}
has associated cost cij.

• Our problem is to find a minimum cost Hamiltonian tour in this graph.

• Integer programming formulation:

min
∑
e∈E

cexe (1)

s.t.
∑

{j|{i,j}∈E}

xe = 2 ∀i ∈ N, (2)∑
{i,j}∈E
i∈S,j 6∈S

xe ≥ 2 ∀S ⊆ N, |S| > 2, (3)

xe ∈ {0, 1} ∀e ∈ E. (4)
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Solving the Traveling Salesman Problem

• Constraints (??) are called the subtour elimination constraints.

• Once again, we see that the number of these constraints is exponential.

• In this case, however, the formulation is not ideal—we must use branch
and cut.

• We can solve the LP relaxation by using constraint generation.

– Solve the LP without constraints (??) to obtain x̂.
– Construct a network by associating the capacity x̂e with each edge e.
– If the minimum cut in this network has capacity < 2, this corresponds

to a violated subtour elimination constraint. Add the constraint to the
relaxation and resolve.

– If the minimum cut in this network has capacity ≥ 2, then all
constraints (??) are satisfied and the relaxation is solved.

• We can now embed this subroutine inside a branch and bound algorithm
to solve the TSP.
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A Branch and Cut Algorithm for the TSP

• At each node in the search tree, solve the relaxation (??)-(??) along
with the constraints imposed by branching.

• This LP can be solved using the previously discussed constraint generation
algorithm.

• If the optimal solution to the relaxation is not integral, then branch on
some fractional variable and continue.

• This branch and cut algorithm will solve reasonably sized instances of
the TSP.
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Gomory Inequalities

• The Gomory procedure is a generic procedure for generating valid
inequalities for mixed-integer linear programs.

• It assume no special problem structure.

• Consider a pure integer program with feasible region P represented in
standard form.

• For a given u ∈ Rm, we have that uAx = ub for all x ∈ P ∩ Zn.

• Because x ≥ 0 for all x ∈ P ∩ Zn, it follows that

buAcx ≤ ub ∀x ∈ P ∩ Zn.

• Since buAc ∈ Zn, it finally follows that

buAcx ≤ bubc ∀x ∈ P ∩ Zn.

• This last inequality is called a Gomory inequality.
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Generating Gomory Inequalities

• Gomory inequalities are easy to generate in LP-based branch and bound.

• If the solution to the current LP relaxation is not feasible, then we must
have (B−1b)i 6∈ Z for some i between 1 and m.

• Taking u to be the ith row of B−1, we see that

xl +
∑
j∈NB

buajcxj ≤ bubc, ∀x ∈ P ∩ Zn,

where

– l is the index of the ith basic variable,
– NB is the set of indices of the nonbasic variables, and
– aj is the jth column of A.

• Eliminating xl from the above inequality using the equation uAx = ub
for all x ∈ P ∩ Zn, we obtain∑

j∈NB

(uaj − buajc)xj ≥ ub− bubc,
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