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Branch and Bound

e Branch and bound is the most commonly-used algorithm for solving
MILPs.

e |t is a divide and conquer approach.

e Suppose I is the feasible region for some MILP and we wish to solve

mingcpc' .

e Consider a partition of F' into subsets F', ... Fj. Then

minc¢'z = min {minc'z}
zEF {1<i<k} z€F;

e In other words, we can optimize over each subset separately.

e |dea: If we can't solve the original problem directly, we might be able to
solve the smaller subproblems recursively.

e Dividing the original problem into subproblems is called branching.

e Taken to the extreme, this scheme is equivalent to complete enumeration.
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Branch and Bound

e Next, we discuss the role of bounding.

e For the rest of the lecture, assume all variables have finite upper and
lower bounds.

e Any feasible solution to the problem provides an upper bound u(F') on
the optimal solution value.

e \We can use approximate methods to obtain an upper bound.

e |dea: After branching, try to obtain a lower bound b(F;) on the optimal
solution value for each of the subproblems.

o If b(F;) > u(F'), then we don't need to consider subproblem 7.

e One easy way to obtain a lower bound is by solving the LP relaxation
obtained by dropping the integrality constraints.
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LP-based Branch and Bound

e In LP-based branch and bound, we first solve the LP relaxation of the
original problem. The result is one of the following:

1. The LP is infeasible = MILP is infeasible.

2. We obtain a feasible solution for the MILP = optimal solution.

3. We obtain an optimal solution to the LP that is not feasible for the
MILP = lower bound.

e In the first two cases, we are finished.

e In the third case, we must branch and recursively solve the resulting
subproblems.
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Branching in LP-based Branch and Bound

e The most common way to branch is as follows:
— Select a variable 7 whose value z; is fractional in the LP solution
— Create two subproblems.

* In one subproblem, impose the constraint x; < |;].

* In the other subproblem, impose the constraint z; > |Z;].
e Such a method of branching is called a branching rule.

e Why is this a valid branching rule?

e What does it mean in a 0-1 integer program?
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Continuing the Algorithm After Branching

e After branching, we solve each of the subproblems recursively.
e Now we have an additional factor to consider.

e |f the optimal solution value to the LP relaxation is greater than the
current upper bound, we need not consider the subproblem further.

e This is the key to the efficiency of the algorithm.
e [erminology

— If we picture the subproblems graphically, they form a search tree.

— Each subproblem is linked to its parent and eventually to its children.

— Eliminating a problem from further consideration is called pruning.

— The act of bounding and then branching is called processing.

— A subproblem that has not yet been considered is called a candidate
for processing.

— The set of candidates for processing is called the candidate list.
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LP-based Branch and Bound Algorithm

1. To start, derive an upper bound U using a heuristic method.
2. Put the original problem on the candidate list.

3. Select a problem S from the candidate list and solve the LP relaxation
to obtain the bound b(S5).

e If the LP is infeasible = node can be pruned.
e Otherwise, if b(S) > U = node can be pruned.
e Otherwise, if b(S) < U and the solution is feasible for the MILP =

set U « b(9).
e Otherwise, branch and add the new subproblem to the candidate list.

4. If the candidate list in nonempty, go to Step 2. Otherwise, the algorithm
is completed.
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Choices in Branch and Bound

e Selecting the next candidate to process.

— "Best-first” always chooses the candidate with the lowest lower bound.
— This rule minimizes the size of the tree (why?).
— There may be practical reasons to deviate from this rule.

e Choosing a branching rule.

— Branching wisely is extremely important.
— A “poor” branching can slow the algorithm significantly.
— We will cover methods of branching in detail in 1E418.

e There are also alternative methods of lower bounding, although LP
relaxation is the most common.
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The Importance of Formulation

e The most vital aspect of branch and bound is obtaining “good” lower
bounds.

e In this respect, not all formulations are created equal.
e Choosing the right one is critical.
e A typical MILP can have many alternative formulations.

e Each formulation corresponds to a different polyhedron enclosing the
integer points that are feasible for the problem.

e The more closely the polyhedron approximates the convex hull of the
integer solutions, the better the bound will be.



ISE 407 Lecture 27

Example: Facility Location Problem

e We are given n potential facility locations and m customers.
e There is a fixed cost ¢; of opening facility j.

e There is a cost d;; associated with serving customer 7 from facility j.
e \We have two sets of binary variables.

— y; is 1 if facility j is opened, O otherwise.
— x;; i1s 1 if customer ¢ is served by facility j, 0 otherwise.

e Here is one formulation'

min Z cjy; + Z Z di;jxij

1=1 7=1

.t Zx] -1 Vi
j=1

sz’j < my; Vj

i=1
iz, y; € 10,1}V,
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Example: Facility Location Problem

e Here is another formulation for the same problem:

min Z cijy; + Z Z di;jxij

=1 7=1

71=1

Lij S Yj VZ,]
LijsYj S {07 1} VZ,]

e Notice that the set of integer solutions contained in each of the polyhedra
is the same (why?).

e However, the second polyhedra strictly includes the first one.

e Therefore, the second polyhedra will yield better lower bounds and be
better for branch and bound.

e Notice that the second formulation includes more constraints, but will
likely solve more quickly.
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Formulation Strength and ldeal Formulations

e Consider two formulations A and B for the same ILP.

e Denote the corresponding feasible regions for their LP relaxations as P4
and PB.

e Formulation A is said to be at least as strong as formulation B if
Ps C Ppg.

e If the inclusion is strict, then A is stronger than B.

o If F'is the set of all feasible integer solutions for the ILP, then we must
have conv(F) C P (why?).

o Ais ideal if conv(F) = Pa
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Strengthening Formulations

e Often, a given formulation can be strengthened with additional
inequalities satisfied by all feasible integer solutions.

e Example: The Perfect Matching Problem

— We are given a set of n people that need to paired in teams of two.

— Let ¢;; represent the “cost” of the team formed by person ¢ and person
7.

— We wish to minimize cost over all teams.

— We can represent this problem on an undirected graph G = (N, F).

— The nodes represent the people and the edges represent pairings.

— We have . = 1 if the endpoints of e are matched, x. = 0 otherwise.

min g Cole

e={i,j}€L
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Valid Inequalities for Matching
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Consider the graph on the left above.

The optimal perfect matching has value L + 2.

The optimal solution to the LP relaxation has value 3.
This formulation can be extremely weak.

Add the valid inequality zo4 + 235 > 1.

Every perfect matching satisfies this inequality.
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The Odd Set Inequalities

We can generalize the inequality from the last slide.
Consider the cut S corresponding to any odd set of nodes.

The cutset corresponding to S is

60(8)={{i,j} € Elies,j &€S}.

An odd cutset is any §(S) for which |S| is odd.

Note that every perfect matching contains at least one edge from every
odd cutset.

Hence, each odd cutset of induces a possible valid inequality.

Z r. > 1,5 C N, |S|odd.
e€d(S)
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Using the New Formulation

e |f we add all of the odd set inequalities, the new formulation is ideal.
e However, the number of inequalities is exponential in size.

e Only a small number of these inequalities will be active at the optimal
solution.

e Recall the concept of a constraint generation algorithm.
e \We can generate these inequalities on the fly.

e This can be done efficiently.
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Constraint Generation Algorithm for Matching

1. Solve the initial LP relaxation.
If the solution is feasible, STOP.
Otherwise, look for a violated odd set inequality.

Add the inequality and reoptimize from the current basis.

A

. Go to Step 2.
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Branch and Cut Algorithms

e |If we combine constraint generation with branch and bound, we get
branch and cut.

e The relaxation at each node is strengthened using valid inequalities.
e This increases the lower bound and improves efficiency.

e Branch and cut is the current state of the art for solving ILPs.
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The Traveling Salesman Problem

e We are given a set IV of customers, along with a cost ¢;; associated with
traveling between customers ¢ and ;.

e We want to order the customers so that the cost of visiting all customers
in the specified order and then returning to the starting point is
minimized.

e We consider an undirected graph G = (N, E) where each edge {i,j}
has associated cost c;;.

e Our problem is to find a minimum cost Hamiltonian tour in this graph.

e Integer programming formulation:

min Z Cole (1)

eclb
st. Y we = 2VieN, (2)
{i{ijteE}
r. > 2VSCN,|S|>2, (3)
{i,j}eE
i€S.,j¢S

. € {0,1}Vee E. (4)
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Solving the Traveling Salesman Problem

e Constraints (77) are called the subtour elimination constraints.
e Once again, we see that the number of these constraints is exponential.

e In this case, however, the formulation is not ideal—we must use branch
and cut.

e \We can solve the LP relaxation by using constraint generation.

— Solve the LP without constraints (77) to obtain Z.

— Construct a network by associating the capacity . with each edge e.

— If the minimum cut in this network has capacity < 2, this corresponds
to a violated subtour elimination constraint. Add the constraint to the
relaxation and resolve.

— If the minimum cut in this network has capacity > 2, then all
constraints (77) are satisfied and the relaxation is solved.

e \WWe can now embed this subroutine inside a branch and bound algorithm
to solve the TSP.
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A Branch and Cut Algorithm for the TSP

e At each node in the search tree, solve the relaxation (77)-(77) along
with the constraints imposed by branching.

e This LP can be solved using the previously discussed constraint generation
algorithm.

e |f the optimal solution to the relaxation is not integral, then branch on
some fractional variable and continue.

e This branch and cut algorithm will solve reasonably sized instances of
the TSP.
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Gomory Inequalities

e The Gomory procedure is a generic procedure for generating valid
inequalities for mixed-integer linear programs.

e |t assume no special problem structure.

e Consider a pure integer program with feasible region P represented in
standard form.

e For a given u € R™, we have that uAx = ub for all x € PN Z".

e Because x > 0 for all x € PN Z", it follows that

|[uA]x <ubVx e PNZ".

e Since |uA| € Z™, it finally follows that

luA]x < |ub] Vz € PNZ".

e This last inequality is called a Gomory inequality.
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Generating Gomory Inequalities

e Gomory inequalities are easy to generate in LP-based branch and bound.

e |f the solution to the current LP relaxation is not feasible, then we must
have (B~1b); € Z for some i between 1 and m.

e Taking u to be the i*" row of B!, we see that

x; + Z uajlx; < |ubl, Ve e PNZ",

where

— [ is the index of the i*" basic variable,
— N B is the set of indices of the nonbasic variables, and
— a; is the j'" column of A.

e Eliminating x; from the above inequality using the equation uAxz = ub
for all x € PN Z", we obtain

> (ua; — |uaj])z; > ub— |ubl,

JENB



