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Discrete Optimization

Integer Linear Optimization: Minimize/Maximize a linear objective function
over a (discrete) set of solutions satisfying specified linear constraints.

zIP = min
x∈Zn

+

{
c>x | Ax ≥ b

}
(MIP)

zLP = min
x∈Rn

+

{
c>x | Ax ≥ b

}
(LP)
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Special Case: Combinatorial Optimization

A Combinatorial Optimization Problem CP = (E,F) consists of

• A ground set E,

• A set F ⊆ 2E of feasible solutions, and

• A cost function c ∈ ZE (optional).

The cost of S ∈ F is c(S) =
∑

e∈S ce. The problem is to find a least cost
member of F .
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Solving Discrete Optimization Problems

• In general, convex optimization problems are “easy” to solve.

• In essence, this is because convex problems have only one local
minimum—the global minimum.

• Discrete optimization problems are particularly challenging because

– the feasible region is nonconvex and
– the description of the feasible region, though compact, is implicit.

• More computationally useful descriptions of the feasible region can be
obtained by either

– constructing an explicit description of the convex hull of feasible
solutions (convexify) ⇒ Cutting plane methods.

– using a set of logical disjunctions to represent the feasible region as a
union of polyhedra (divide and conquer) ⇒ Branch and bound
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Computational Challenges

• In general, both of these approaches lead to descriptions of exponential
size (bad).

• Fortunately, we typically only need a small part of the description to
derive a proof of optimality.

• Modern state-of-the-art algorithms effectively combine these two
techniques.

• One of the biggest challenges one faces in practice is dealing with the
numerics.
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Example: Cutting Plane Algorithm
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Example: Cutting Plane Algorithm
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Example: Cutting Plane Algorithm

7



ISE 407 Lecture 26 8

Example: Cutting Plane Algorithm
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Example: Cutting Plane Algorithm
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The Chvátal-Gomory Procedure

• Let A = (a1, a2, . . . , an) and N = {1, . . . , n}.
1. Choose a weight vector u.
2. Obtain the valid inequality

∑
j∈N(uaj)x ≤ ub.

3. Round the coefficients down to obtain
∑

j∈N(buajc)x ≤ ub. Why
can we do this?

4. Finally, round the right hand side down to obtain the valid inequality∑
j∈N

(buajc)x ≤ bubc

• This procedure is called the Chvátal-Gomory rounding procedure, or
simply the C-G procedure.

• Surprisingly, any pur integer program can be solved by a finite number
of iterations of this procedure!
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Deriving Valid Inequalities from the Tableau

• Note that each row of the tableau is a nonnegative linear combination of
the original equations.

• Suppose we choose a row in which the value of the basic variable is not
an integer.

• Applying the procedure from the last slide, the resulting inequality will
only involve nonbasic variables and will be of the form∑

j∈NB

fjxj ≥ f0

where 0 ≤ fj < 1 and 0 < f0 < 1.

• We can conclude that the generated inequality will be violated by the
current LP solution.

• Under mild assumptions on the algorithm used to solve the LP, this yields
a general algorithm for solving integer programs.

• However, its convergence can be very slow and the numerics are a
challenge!.
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Divide and Conquer

• Implicit enumeration methods enumerate the solution space in an
intelligent way.

• The most common algorithm of this type is branch and bound.

• Suppose F is the set of feasible solutions for a given MILP. We wish to
solve minx∈F c>x.

• Divide and Conquer: We consider a partition of F into subsets F1, . . . Fk.
Then

min
x∈F

c>x = min
1≤i≤k

{min
x∈Fi

c>x}.

We can then solve the resulting subproblems recursively.

– Dividing the original problem into subproblems is called branching.
– Taken to the extreme, this scheme is equivalent to complete

enumeration.
– We avoid complete enumeration primarily by deriving bounds on the

value of an optimal solution to each subproblem by solving a convex
relaxation.
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Branch and Bound

• A relaxation of an ILP is an auxiliary mathematical program for which

– the feasible region contains the feasible region for the original ILP, and
– the objective function value of each solution to the original ILP is not

increased.
– Relaxations can be used to efficiently get bounds on the value of the

original integer program.

• Types of Relaxations

– Continuous relaxation
– Combinatorial relaxation
– Lagrangian relaxations
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Branch and Bound Algorithm

Initialize the queue with F . While there are subproblems in the queue, do

1. Remove a subproblem and solve its relaxation.

2. The relaxation is infeasible⇒ subproblem is infeasible and can be pruned.

3. Solution is feasible for the MILP ⇒ subproblem solved (update upper
bound).

4. Solution is not feasible for the MILP ⇒ lower bound.

• If the lower bound exceeds the global upper bound, we can prune the
node.
• Otherwise, we branch and add the resulting subproblems to the queue.
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Ingredient One: Bounding

• The method by which bounds are derived in branch and bound is perhaps
the most crucial element of an effective algorithm.

• The most common method of bounding is to develop an outer
approximation of the convex hull of feasible solutions.

• More sophisticated methods based on decomposition are also possible.
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Ingredient Two: Branching

Branching involves partitioning the feasible region using a logical disjunction
such that:

• All optimal solutions are in one of the members of the partition.

• The solution to the current relaxation is not in any of the members of
the partition.
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Terminology

• If we picture the subproblems graphically, they form a search tree.

• Each subproblem is linked to its parent and eventually to its children.

• Eliminating a problem from further consideration is called pruning.

• The act of bounding and then branching is called processing.

• A subproblem that has not yet been considered is called a candidate for
processing.

• The set of candidates for processing is called the candidate list.
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Branch and Bound Tree
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Figure 1: Final tree
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A Thousand Words

Figure 2: Tree after 400 nodes
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A Thousand Words

Figure 3: Tree after 1200 nodes
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A Thousand Words

Figure 4: Final tree
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Branch and Cut

• In practice, branching and cutting are usually integrated into a single
algorithm.

• In principle, the same bound improvement can be obtained by either
branching or cutting using the same disjunction, which creates a tradeoff.

– Cutting does not create additional subproblems, but the conditioning
of the matrix degrades when adding cuts.

– Branching creates additional subproblems, but does not tend to
degrade conditioning as much.

• The reasons that cutting generally degrades the conditioning can be
understood geometrically.

• Because cuts are obtained as combinations of existing inequalities, new
ones tend to be increasingly parallel to old ones.

• Eventually, this becomes such an issue that making further progres is
impossible.
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