Computational Optimization
ISE 407

Lecture 26

Dr. Ted Ralphs

ISE 407 Lecture 26 1

Discrete Optimization

Integer Linear Optimization: Minimize/Maximize a linear objective function
over a (discrete) set of solutions satisfying specified linear constraints.

zip = min {c'z | Az > b} (MIP)
wEZ”
zpp = min {c'z | Az > b} (LP)
ceRY
7 | | T T T
— Polyhedron P
6l - - Convex Hull of Integer Points |
5 e pu S U N
sl T o]
3 b e]

ISE 407 Lecture 26 2

Special Case: Combinatorial Optimization

A Combinatorial Optimization Problem C'P = (F,F) consists of

e A ground set E,
o A set F C 2F of feasible solutions, and
e A cost function ¢ € ZF (optional).

The cost of S € Fisc(S) =)
member of F.

ccs Ce- The problem is to find a least cost

ISE 407 Lecture 26 3

Solving Discrete Optimization Problems

e |n general, convex optimization problems are “easy” to solve.

e In essence, this is because convex problems have only one local
minimum—the global minimum.

e Discrete optimization problems are particularly challenging because

— the feasible region is nonconvex and
— the description of the feasible region, though compact, is implicit.

e More computationally useful descriptions of the feasible region can be
obtained by either

— constructing an explicit description of the convex hull of feasible
solutions (convexify) = Cutting plane methods.

— using a set of logical disjunctions to represent the feasible region as a
union of polyhedra (divide and conquer) = Branch and bound

ISE 407 Lecture 26 4

Computational Challenges

e In general, both of these approaches lead to descriptions of exponential
size (bad).

e Fortunately, we typically only need a small part of the description to
derive a proof of optimality.

e Modern state-of-the-art algorithms effectively combine these two
techniques.

e One of the biggest challenges one faces in practice is dealing with the
numerics.

ISE 407 Lecture 26

Example: Cutting Plane Algorithm

ISE 407 Lecture 26

Example: Cutting Plane Algorithm

ISE 407 Lecture 26

Example: Cutting Plane Algorithm

ISE 407 Lecture 26

Example: Cutting Plane Algorithm

ISE 407 Lecture 26

Example: Cutting Plane Algorithm

ISE 407 Lecture 26 10

The Chvatal-Gomory Procedure

o Let A= (ay,as,...,a,)and N ={1,...,n}.

1. Choose a weight vector w.

2. Obtain the valid inequality > .y (uaj)z < ub.

3. Round the coefficients down to obtain » . (|ua;|)z < ub. Why
can we do this?

4. Finally, round the right hand side down to obtain the valid inequality

> (lua;|)z < |ub)

JEN

e This procedure is called the Chvatal-Gomory rounding procedure, or
simply the C-G procedure.

e Surprisingly, any pur integer program can be solved by a finite number
of iterations of this procedure!

ISE 407 Lecture 26 11

Deriving Valid Inequalities from the Tableau

e Note that each row of the tableau is a nonnegative linear combination of
the original equations.

e Suppose we choose a row in which the value of the basic variable is not
an integer.

e Applying the procedure from the last slide, the resulting inequality will
only involve nonbasic variables and will be of the form

Z fix; = fo

jJENB

where 0 < f; <1 and 0 < fy < 1.

e \We can conclude that the generated inequality will be violated by the
current LP solution.

e Under mild assumptions on the algorithm used to solve the LP, this yields
a general algorithm for solving integer programs.

e However, its convergence can be very slow and the numerics are a
challenge!.

ISE 407 Lecture 26 12

Divide and Conquer

e /mplicit enumeration methods enumerate the solution space in an
intelligent way.

e The most common algorithm of this type is branch and bound.

e Suppose I is the set of feasible solutions for a given MILP. We wish to
solve mingcpc' z.

e Divide and Conquer: We consider a partition of F'into subsets F1, ... F}.
Then

minc' 2z = min {minc'z}.
zEF 1<i<k zCF

We can then solve the resulting subproblems recursively.

— Dividing the original problem into subproblems is called branching.

— Taken to the extreme, this scheme is equivalent to complete
enumeration.

— We avoid complete enumeration primarily by deriving bounds on the
value of an optimal solution to each subproblem by solving a convex
relaxation.

ISE 407 Lecture 26 13

Branch and Bound

e A relaxation of an ILP is an auxiliary mathematical program for which

— the feasible region contains the feasible region for the original ILP, and
— the objective function value of each solution to the original ILP is not
increased.

— Relaxations can be used to efficiently get bounds on the value of the
original integer program.

e Types of Relaxations

— Continuous relaxation
— Combinatorial relaxation
— Lagrangian relaxations

ISE 407 Lecture 26 14

Branch and Bound Algorithm

Initialize the queue with F'. While there are subproblems in the queue, do

1. Remove a subproblem and solve its relaxation.
2. The relaxation is infeasible = subproblem is infeasible and can be pruned.

3. Solution is feasible for the MILP =- subproblem solved (update upper
bound).

4. Solution is not feasible for the MILP = lower bound.

e If the lower bound exceeds the global upper bound, we can prune the
node.
e Otherwise, we branch and add the resulting subproblems to the queue.

ISE 407 Lecture 26 15

Ingredient One: Bounding

e The method by which bounds are derived in branch and bound is perhaps
the most crucial element of an effective algorithm.

e The most common method of bounding is to develop an outer
approximation of the convex hull of feasible solutions.

e More sophisticated methods based on decomposition are also possible.

ISE 407 Lecture 26 16

Ingredient Two: Branching

Branching involves partitioning the feasible region using a logical disjunction
such that:

e All optimal solutions are in one of the members of the partition.

e The solution to the current relaxation is not in any of the members of
the partition.

" - - - - - - - - -
--'-'-'-- ---"--
L] Il :___.._-__'.ll--- L L] -hih‘-h___-__ &
--______.-..-'_'__..... '“'H-\.h —
. w & w - - - - . | -
lI i i i i ik i |
" » < L] 1 L] L] . PR
- - = - & = = — o
| T ' T |
. - | * . . - - - L] | -
| - L l
" - - - - * " w
| |
T— T |
. - - . “Pa—— = - ® . -

ISE 407 Lecture 26 17

Terminology

e |f we picture the subproblems graphically, they form a search tree.

e Each subproblem is linked to its parent and eventually to its children.
e Eliminating a problem from further consideration is called pruning.

e The act of bounding and then branching is called processing.

e A subproblem that has not yet been considered is called a candidate for
processing.

e The set of candidates for processing is called the candidate list.

ISE 407 Lecture 26

Branch and Bound Tree

Key
Candidate 199.2
Tnfeasible 198.8 198.0
732 < 0.0 732 2 10 r32 <00 32 2 1.0
Solution 198.6 198.1 197.8 197.2

731 00 | w3 > 1.0 /u<0\m>l” T35 < 0.0 T35 = 1.0 r30 < 0.0 T30 > 1.0
198.2 196.3 196.8 197.3 197.3 @ 196.4

116 0.0 | 216> 1.0 219 <00 \ w19 > 1.0 23200 | 23> 1.0 17 0.0 7 > 1.0 .:,<\x,‘>w,gu.u\x.—,zlu

222 00 | 23> 1.0 25 < 0.0 25 > 1.0 219 0.0 19 > 1.0 zg < 0.0 g > 1.0 (n <00

00 | 23 2 1.0 o1 2 1.0
o 1 166 e
/ 72 1.0 K

%10 29 < 0.0 /,797.1) 7

196.1 196.5 196.1 196.0 196.1 196.8

225 <00 | w2 > 1.0 230 0.0 | 230 > 1.0 29> 1.0 29 < 0.0 %ﬂ.n 225 > 1.0
0 163 ° @ 160

29 <00 \ 29> 10

216 0.0 | 716 2 1.0

2700 \ =

o7 <00 \ @i > 10

16
T3 grm\z,. >1.0

@ 1961 @ 196.5.
19 < 0.0 T19 > 1.0 [“>10 z11 < 0.0
© 5 @
w20 < 0.0 20 2 1.0

/TN N

Figure 1: Final tree

ISE 407 Lecture 26

19

obj. value

7200
/300
7400
/7500
/7600
/700
7800
7900
8000

A Thousand Words

B&EB tree (Mone 0.38s)

e
%

Figure 2: Tree after 400 nodes

ISE 407 Lecture 26

20

obj. value

7200
/300
7400
/7500
/7600
/700
7800
7900
8000

A Thousand Words

B&EB tree (Mone 1.46s)

i !
il h‘ T

|I)'i|I|

§

Tl | Ml III

Figure 3: Tree after 1200 nodes

ISE 407 Lecture 26

A Thousand Words

B&EB tree (Mone 1.65s)

7200 T

‘ I' ‘é 1*”)3 ﬁﬁ\‘

/7600

obj. value

7700 ||r | ‘ ‘|
7800

7900
8000

7400

/7500
i I'HIIIII |||I1WI|| [fllilhflll LA
o oy

Figure 4: Final tree

ISE 407 Lecture 26 22

Branch and Cut

e In practice, branching and cutting are usually integrated into a single
algorithm.

e In principle, the same bound improvement can be obtained by either
branching or cutting using the same disjunction, which creates a tradeoff.

— Cutting does not create additional subproblems, but the conditioning
of the matrix degrades when adding cuts.

— Branching creates additional subproblems, but does not tend to
degrade conditioning as much.

e The reasons that cutting generally degrades the conditioning can be
understood geometrically.

e Because cuts are obtained as combinations of existing inequalities, new
ones tend to be increasingly parallel to old ones.

e Eventually, this becomes such an issue that making further progres is
impossible.

