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Discrete Optimization

Integer Linear Optimization: Minimize/Maximize a linear objective function
over a (discrete) set of solutions satisfying specified linear constraints.
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Special Case: Combinatorial Optimization

A Combinatorial Optimization Problem C'P = (F,F) consists of

e A ground set E,
o A set F C 2F of feasible solutions, and
e A cost function ¢ € ZF (optional).

The cost of S € Fisc(S) =)
member of F.

ccs Ce- The problem is to find a least cost
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Solving Discrete Optimization Problems

e |n general, convex optimization problems are “easy” to solve.

e In essence, this is because convex problems have only one local
minimum—the global minimum.

e Discrete optimization problems are particularly challenging because

— the feasible region is nonconvex and
— the description of the feasible region, though compact, is implicit.

e More computationally useful descriptions of the feasible region can be
obtained by either

— constructing an explicit description of the convex hull of feasible
solutions (convexify) = Cutting plane methods.

— using a set of logical disjunctions to represent the feasible region as a
union of polyhedra (divide and conquer) = Branch and bound
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Computational Challenges

e In general, both of these approaches lead to descriptions of exponential
size (bad).

e Fortunately, we typically only need a small part of the description to
derive a proof of optimality.

e Modern state-of-the-art algorithms effectively combine these two
techniques.

e One of the biggest challenges one faces in practice is dealing with the
numerics.
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Example: Cutting Plane Algorithm




ISE 407 Lecture 26

Example: Cutting Plane Algorithm




ISE 407 Lecture 26

Example: Cutting Plane Algorithm




ISE 407 Lecture 26

Example: Cutting Plane Algorithm




ISE 407 Lecture 26

Example: Cutting Plane Algorithm




ISE 407 Lecture 26 10

The Chvatal-Gomory Procedure

o Let A= (ay,as,...,a,)and N ={1,...,n}.

1. Choose a weight vector w.

2. Obtain the valid inequality > .y (uaj)z < ub.

3. Round the coefficients down to obtain » . (|ua;|)z < ub. Why
can we do this?

4. Finally, round the right hand side down to obtain the valid inequality

> (lua;|)z < |ub)

JEN

e This procedure is called the Chvatal-Gomory rounding procedure, or
simply the C-G procedure.

e Surprisingly, any pur integer program can be solved by a finite number
of iterations of this procedure!
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Deriving Valid Inequalities from the Tableau

e Note that each row of the tableau is a nonnegative linear combination of
the original equations.

e Suppose we choose a row in which the value of the basic variable is not
an integer.

e Applying the procedure from the last slide, the resulting inequality will
only involve nonbasic variables and will be of the form

Z fix; = fo

jJENB

where 0 < f; <1 and 0 < fy < 1.

e \We can conclude that the generated inequality will be violated by the
current LP solution.

e Under mild assumptions on the algorithm used to solve the LP, this yields
a general algorithm for solving integer programs.

e However, its convergence can be very slow and the numerics are a
challenge!.
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Divide and Conquer

e /mplicit enumeration methods enumerate the solution space in an
intelligent way.

e The most common algorithm of this type is branch and bound.

e Suppose I is the set of feasible solutions for a given MILP. We wish to
solve mingcpc' z.

e Divide and Conquer: We consider a partition of F'into subsets F1, ... F}.
Then

minc' 2z = min {minc'z}.
zEF 1<i<k zCF

We can then solve the resulting subproblems recursively.

— Dividing the original problem into subproblems is called branching.

— Taken to the extreme, this scheme is equivalent to complete
enumeration.

— We avoid complete enumeration primarily by deriving bounds on the
value of an optimal solution to each subproblem by solving a convex
relaxation.
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Branch and Bound

e A relaxation of an ILP is an auxiliary mathematical program for which

— the feasible region contains the feasible region for the original ILP, and
— the objective function value of each solution to the original ILP is not
increased.

— Relaxations can be used to efficiently get bounds on the value of the
original integer program.

e Types of Relaxations

— Continuous relaxation
— Combinatorial relaxation
— Lagrangian relaxations
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Branch and Bound Algorithm

Initialize the queue with F'. While there are subproblems in the queue, do

1. Remove a subproblem and solve its relaxation.
2. The relaxation is infeasible = subproblem is infeasible and can be pruned.

3. Solution is feasible for the MILP =- subproblem solved (update upper
bound).

4. Solution is not feasible for the MILP = lower bound.

e If the lower bound exceeds the global upper bound, we can prune the
node.
e Otherwise, we branch and add the resulting subproblems to the queue.
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Ingredient One: Bounding

e The method by which bounds are derived in branch and bound is perhaps
the most crucial element of an effective algorithm.

e The most common method of bounding is to develop an outer
approximation of the convex hull of feasible solutions.

e More sophisticated methods based on decomposition are also possible.
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Ingredient Two: Branching

Branching involves partitioning the feasible region using a logical disjunction
such that:

e All optimal solutions are in one of the members of the partition.

e The solution to the current relaxation is not in any of the members of
the partition.
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Terminology

e |f we picture the subproblems graphically, they form a search tree.

e Each subproblem is linked to its parent and eventually to its children.
e Eliminating a problem from further consideration is called pruning.

e The act of bounding and then branching is called processing.

e A subproblem that has not yet been considered is called a candidate for
processing.

e The set of candidates for processing is called the candidate list.
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Branch and Bound Tree
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Figure 1: Final tree
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Figure 2: Tree after 400 nodes
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Figure 3: Tree after 1200 nodes
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Figure 4: Final tree
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Branch and Cut

e In practice, branching and cutting are usually integrated into a single
algorithm.

e In principle, the same bound improvement can be obtained by either
branching or cutting using the same disjunction, which creates a tradeoff.

— Cutting does not create additional subproblems, but the conditioning
of the matrix degrades when adding cuts.

— Branching creates additional subproblems, but does not tend to
degrade conditioning as much.

e The reasons that cutting generally degrades the conditioning can be
understood geometrically.

e Because cuts are obtained as combinations of existing inequalities, new
ones tend to be increasingly parallel to old ones.

e Eventually, this becomes such an issue that making further progres is
impossible.



