Computational Optimization ISE 407

Lecture 26

Dr. Ted Ralphs

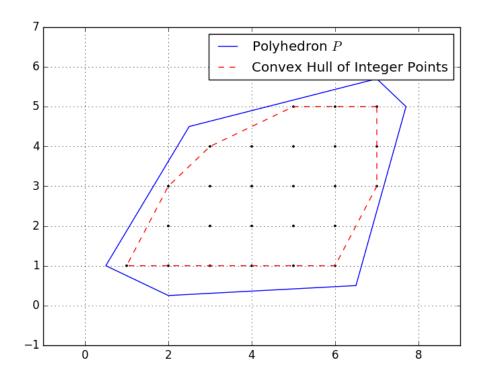
Discrete Optimization

Integer Linear Optimization: Minimize/Maximize a linear objective function over a (discrete) set of solutions satisfying specified linear constraints.

$$z_{\text{IP}} = \min_{x \in \mathbb{Z}_+^n} \left\{ c^\top x \mid Ax \ge b \right\}$$

$$z_{\text{LP}} = \min_{x \in \mathbb{R}_+^n} \left\{ c^\top x \mid Ax \ge b \right\}$$
(LP)

$$z_{\text{LP}} = \min_{x \in \mathbb{R}^n_+} \left\{ c^\top x \mid Ax \ge b \right\} \tag{LP}$$



Special Case: Combinatorial Optimization

A Combinatorial Optimization Problem $CP = (E, \mathcal{F})$ consists of

- A ground set E,
- A set $\mathcal{F} \subseteq 2^E$ of feasible solutions, and
- A cost function $c \in \mathbb{Z}^E$ (optional).

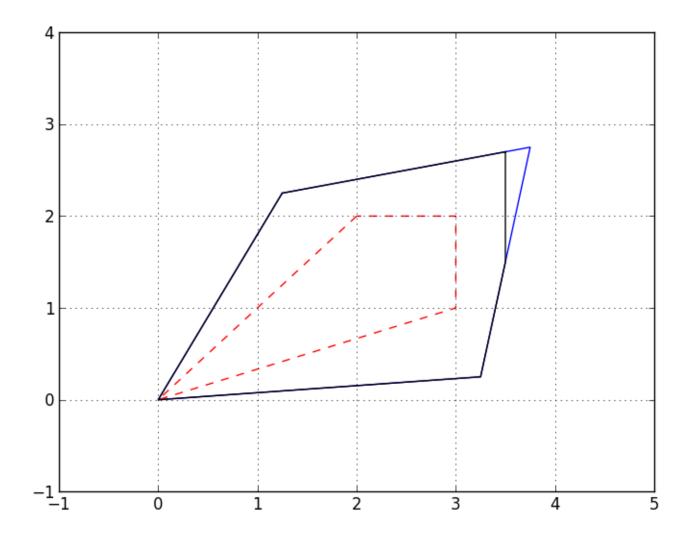
The *cost* of $S \in \mathcal{F}$ is $c(S) = \sum_{e \in S} c_e$. The problem is to find a least cost member of \mathcal{F} .

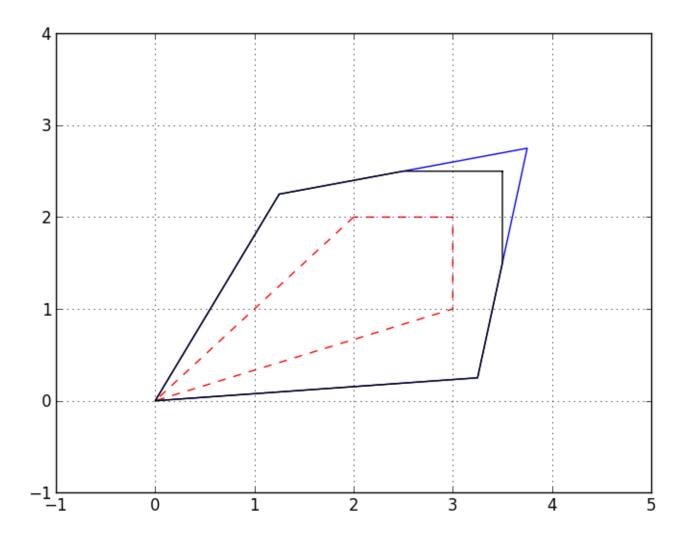
Solving Discrete Optimization Problems

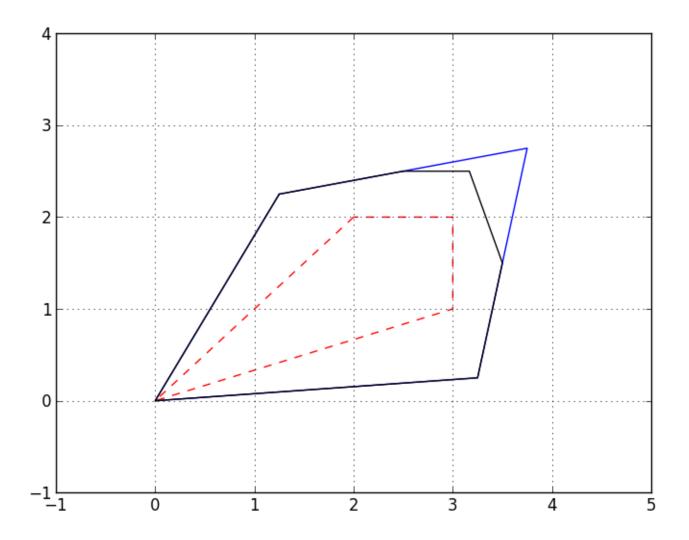
- In general, convex optimization problems are "easy" to solve.
- In essence, this is because convex problems have only one local minimum—the global minimum.
- Discrete optimization problems are particularly challenging because
 - the feasible region is nonconvex and
 - the description of the feasible region, though compact, is implicit.
- More computationally useful descriptions of the feasible region can be obtained by either
 - constructing an explicit description of the convex hull of feasible solutions (convexify) ⇒ Cutting plane methods.
 - using a set of logical disjunctions to represent the feasible region as a union of polyhedra (divide and conquer) \Rightarrow Branch and bound

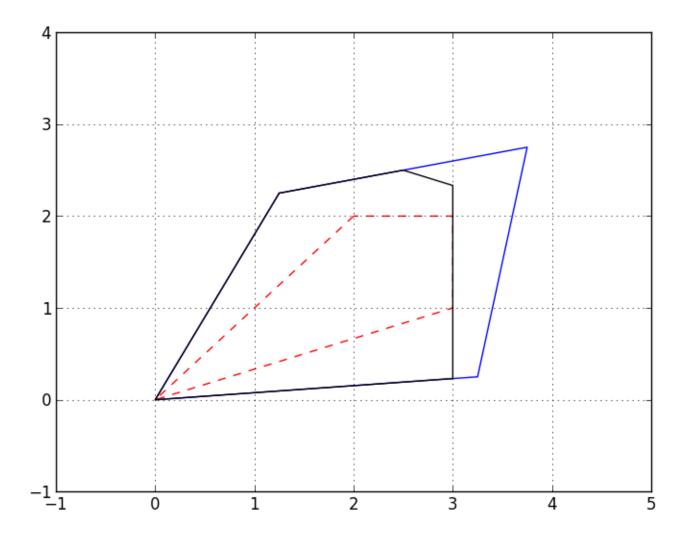
Computational Challenges

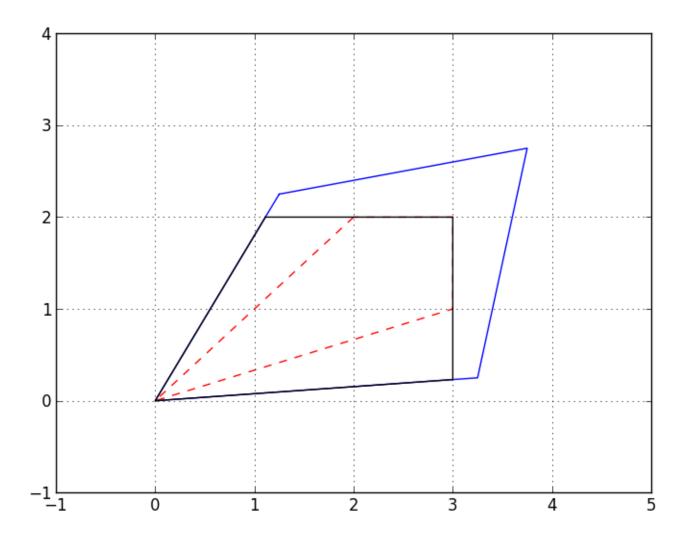
- In general, both of these approaches lead to descriptions of exponential size (bad).
- Fortunately, we typically only need a small part of the description to derive a proof of optimality.
- Modern state-of-the-art algorithms effectively combine these two techniques.
- One of the biggest challenges one faces in practice is dealing with the numerics.











The Chvátal-Gomory Procedure

- Let $A = (a_1, a_2, \dots, a_n)$ and $N = \{1, \dots, n\}$.
 - 1. Choose a weight vector u.
 - 2. Obtain the valid inequality $\sum_{j \in N} (ua_j)x \leq ub$.
 - 3. Round the coefficients down to obtain $\sum_{j \in N} (\lfloor ua_j \rfloor) x \leq ub$. Why can we do this?
 - 4. Finally, round the right hand side down to obtain the valid inequality

$$\sum_{j \in N} (\lfloor ua_j \rfloor) x \le \lfloor ub \rfloor$$

- This procedure is called the *Chvátal-Gomory* rounding procedure, or simply the *C-G procedure*.
- Surprisingly, any pur integer program can be solved by a finite number of iterations of this procedure!

Deriving Valid Inequalities from the Tableau

 Note that each row of the tableau is a nonnegative linear combination of the original equations.

- Suppose we choose a row in which the value of the basic variable is not an integer.
- Applying the procedure from the last slide, the resulting inequality will only involve nonbasic variables and will be of the form

$$\sum_{j \in NB} f_j x_j \ge f_0$$

where $0 \le f_i < 1$ and $0 < f_0 < 1$.

- We can conclude that the generated inequality will be violated by the current LP solution.
- Under mild assumptions on the algorithm used to solve the LP, this yields a general algorithm for solving integer programs.
- However, its convergence can be very slow and the numerics are a challenge!.

Divide and Conquer

- *Implicit enumeration* methods enumerate the solution space in an intelligent way.
- The most common algorithm of this type is branch and bound.
- Suppose F is the set of feasible solutions for a given MILP. We wish to solve $\min_{x \in F} c^{\top} x$.
- <u>Divide and Conquer</u>: We consider a partition of F into subsets $F_1, \ldots F_k$. Then

$$\min_{x \in F} c^{\top} x = \min_{1 \le i \le k} \{ \min_{x \in F_i} c^{\top} x \}.$$

We can then solve the resulting *subproblems* recursively.

- Dividing the original problem into subproblems is called *branching*.
- Taken to the extreme, this scheme is equivalent to complete enumeration.
- We avoid complete enumeration primarily by deriving bounds on the value of an optimal solution to each subproblem by solving a convex relaxation.

Branch and Bound

- A relaxation of an ILP is an auxiliary mathematical program for which
 - the feasible region contains the feasible region for the original ILP, and
 - the objective function value of each solution to the original ILP is not increased.
 - Relaxations can be used to efficiently get bounds on the value of the original integer program.
- Types of Relaxations
 - Continuous relaxation
 - Combinatorial relaxation
 - Lagrangian relaxations

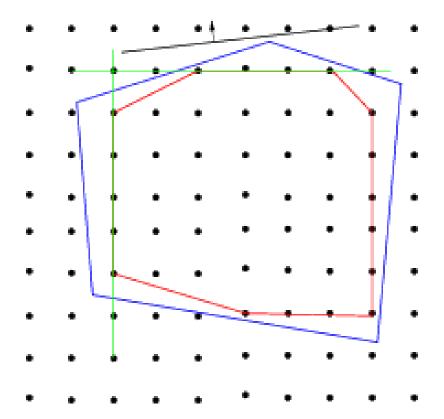
Branch and Bound Algorithm

Initialize the queue with F. While there are subproblems in the queue, do

- 1. Remove a subproblem and solve its relaxation.
- 2. The relaxation is infeasible \Rightarrow subproblem is infeasible and can be pruned.
- 3. Solution is feasible for the MILP \Rightarrow subproblem solved (update upper bound).
- 4. Solution is not feasible for the MILP \Rightarrow lower bound.
 - If the lower bound exceeds the global upper bound, we can *prune the* node.
 - Otherwise, we *branch* and add the resulting subproblems to the queue.

Ingredient One: Bounding

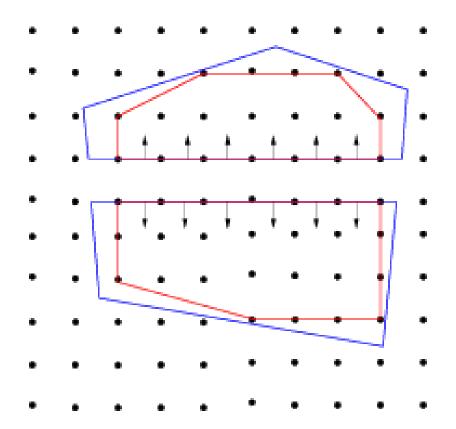
- The method by which bounds are derived in branch and bound is perhaps the most crucial element of an effective algorithm.
- The most common method of bounding is to develop an outer approximation of the convex hull of feasible solutions.
- More sophisticated methods based on decomposition are also possible.



Ingredient Two: Branching

Branching involves partitioning the feasible region using a logical disjunction such that:

- All optimal solutions are in one of the members of the partition.
- The solution to the current relaxation is not in any of the members of the partition.



Terminology

- If we picture the subproblems graphically, they form a *search tree*.
- Each subproblem is linked to its *parent* and eventually to its *children*.
- Eliminating a problem from further consideration is called *pruning*.
- The act of bounding and then branching is called processing.
- A subproblem that has not yet been considered is called a candidate for processing.
- The set of candidates for processing is called the candidate list.

Branch and Bound Tree

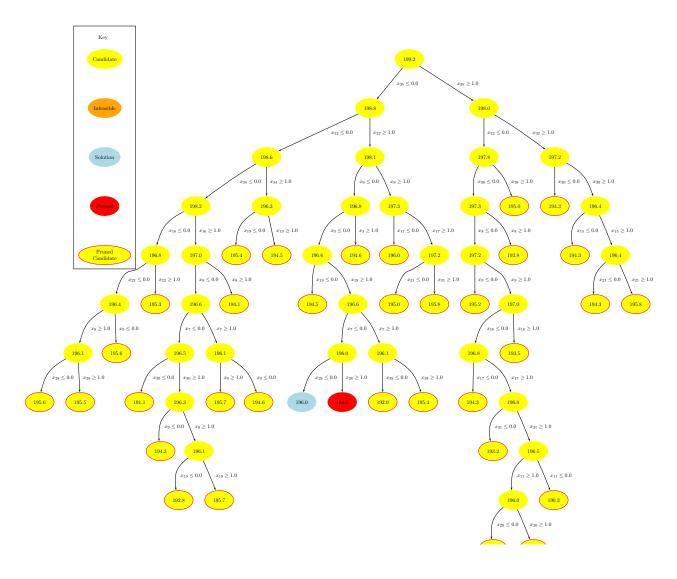


Figure 1: Final tree

A Thousand Words

B&B tree (None 0.38s)

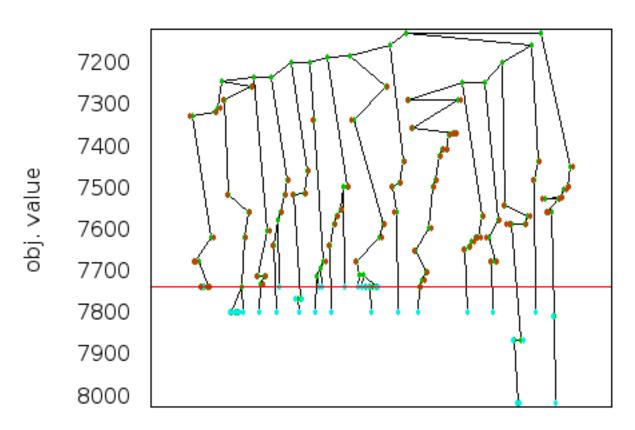


Figure 2: Tree after 400 nodes

A Thousand Words

B&B tree (None 1.46s)

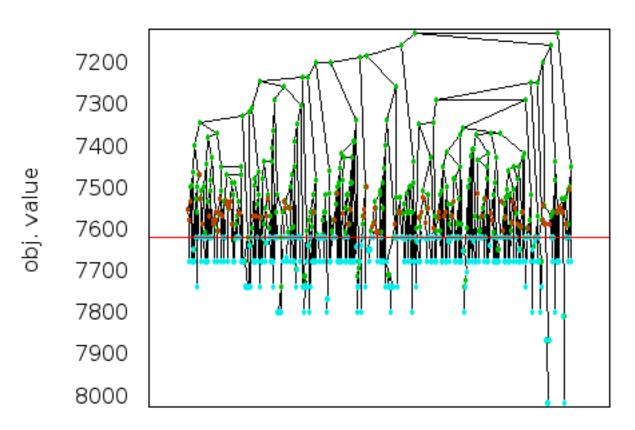


Figure 3: Tree after 1200 nodes

A Thousand Words

B&B tree (None 1.65s)

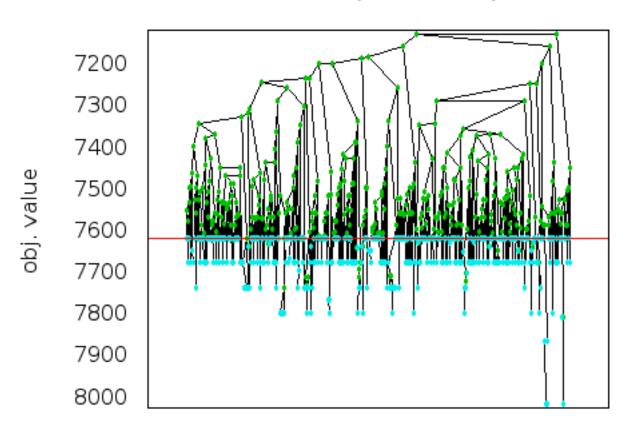


Figure 4: Final tree

Branch and Cut

• In practice, branching and cutting are usually integrated into a single algorithm.

- In principle, the same bound improvement can be obtained by either branching or cutting using the same disjunction, which creates a tradeoff.
 - Cutting does not create additional subproblems, but the conditioning of the matrix degrades when adding cuts.
 - Branching creates additional subproblems, but does not tend to degrade conditioning as much.
- The reasons that cutting generally degrades the conditioning can be understood geometrically.
- Because cuts are obtained as combinations of existing inequalities, new ones tend to be increasingly parallel to old ones.
- Eventually, this becomes such an issue that making further progres is impossible.