
Computational Optimization
ISE 407

Lecture 26

Dr. Ted Ralphs



ISE 407 Lecture 26 1

Discrete Optimization

Integer Linear Optimization: Minimize/Maximize a linear objective function
over a (discrete) set of solutions satisfying specified linear constraints.

zIP = min
x∈Zn

+

{
c>x | Ax ≥ b

}
(MIP)

zLP = min
x∈Rn

+

{
c>x | Ax ≥ b

}
(LP)

1



ISE 407 Lecture 26 2

Special Case: Combinatorial Optimization

A Combinatorial Optimization Problem CP = (E,F) consists of

• A ground set E,

• A set F ⊆ 2E of feasible solutions, and

• A cost function c ∈ ZE (optional).

The cost of S ∈ F is c(S) =
∑

e∈S ce. The problem is to find a least cost
member of F .

2



ISE 407 Lecture 26 3

Solving Discrete Optimization Problems

• In general, convex optimization problems are “easy” to solve.

• In essence, this is because convex problems have only one local
minimum—the global minimum.

• Discrete optimization problems are particularly challenging because

– the feasible region is nonconvex and
– the description of the feasible region, though compact, is implicit.

• More computationally useful descriptions of the feasible region can be
obtained by either

– constructing an explicit description of the convex hull of feasible
solutions (convexify) ⇒ Cutting plane methods.

– using a set of logical disjunctions to represent the feasible region as a
union of polyhedra (divide and conquer) ⇒ Branch and bound

3



ISE 407 Lecture 26 4

Computational Challenges

• In general, both of these approaches lead to descriptions of exponential
size (bad).

• Fortunately, we typically only need a small part of the description to
derive a proof of optimality.

• Modern state-of-the-art algorithms effectively combine these two
techniques.

• One of the biggest challenges one faces in practice is dealing with the
numerics.

4



ISE 407 Lecture 26 5

Example: Cutting Plane Algorithm

5



ISE 407 Lecture 26 6

Example: Cutting Plane Algorithm

6



ISE 407 Lecture 26 7

Example: Cutting Plane Algorithm

7



ISE 407 Lecture 26 8

Example: Cutting Plane Algorithm

8



ISE 407 Lecture 26 9

Example: Cutting Plane Algorithm

9



ISE 407 Lecture 26 10

The Chvátal-Gomory Procedure

• Let A = (a1, a2, . . . , an) and N = {1, . . . , n}.
1. Choose a weight vector u.
2. Obtain the valid inequality

∑
j∈N(uaj)x ≤ ub.

3. Round the coefficients down to obtain
∑

j∈N(buajc)x ≤ ub. Why
can we do this?

4. Finally, round the right hand side down to obtain the valid inequality∑
j∈N

(buajc)x ≤ bubc

• This procedure is called the Chvátal-Gomory rounding procedure, or
simply the C-G procedure.

• Surprisingly, any pur integer program can be solved by a finite number
of iterations of this procedure!

10



ISE 407 Lecture 26 11

Deriving Valid Inequalities from the Tableau

• Note that each row of the tableau is a nonnegative linear combination of
the original equations.

• Suppose we choose a row in which the value of the basic variable is not
an integer.

• Applying the procedure from the last slide, the resulting inequality will
only involve nonbasic variables and will be of the form∑

j∈NB

fjxj ≥ f0

where 0 ≤ fj < 1 and 0 < f0 < 1.

• We can conclude that the generated inequality will be violated by the
current LP solution.

• Under mild assumptions on the algorithm used to solve the LP, this yields
a general algorithm for solving integer programs.

• However, its convergence can be very slow and the numerics are a
challenge!.

11



ISE 407 Lecture 26 12

Divide and Conquer

• Implicit enumeration methods enumerate the solution space in an
intelligent way.

• The most common algorithm of this type is branch and bound.

• Suppose F is the set of feasible solutions for a given MILP. We wish to
solve minx∈F c>x.

• Divide and Conquer: We consider a partition of F into subsets F1, . . . Fk.
Then

min
x∈F

c>x = min
1≤i≤k

{min
x∈Fi

c>x}.

We can then solve the resulting subproblems recursively.

– Dividing the original problem into subproblems is called branching.
– Taken to the extreme, this scheme is equivalent to complete

enumeration.
– We avoid complete enumeration primarily by deriving bounds on the

value of an optimal solution to each subproblem by solving a convex
relaxation.

12



ISE 407 Lecture 26 13

Branch and Bound

• A relaxation of an ILP is an auxiliary mathematical program for which

– the feasible region contains the feasible region for the original ILP, and
– the objective function value of each solution to the original ILP is not

increased.
– Relaxations can be used to efficiently get bounds on the value of the

original integer program.

• Types of Relaxations

– Continuous relaxation
– Combinatorial relaxation
– Lagrangian relaxations

13



ISE 407 Lecture 26 14

Branch and Bound Algorithm

Initialize the queue with F . While there are subproblems in the queue, do

1. Remove a subproblem and solve its relaxation.

2. The relaxation is infeasible⇒ subproblem is infeasible and can be pruned.

3. Solution is feasible for the MILP ⇒ subproblem solved (update upper
bound).

4. Solution is not feasible for the MILP ⇒ lower bound.

• If the lower bound exceeds the global upper bound, we can prune the
node.
• Otherwise, we branch and add the resulting subproblems to the queue.

14



ISE 407 Lecture 26 15

Ingredient One: Bounding

• The method by which bounds are derived in branch and bound is perhaps
the most crucial element of an effective algorithm.

• The most common method of bounding is to develop an outer
approximation of the convex hull of feasible solutions.

• More sophisticated methods based on decomposition are also possible.

15



ISE 407 Lecture 26 16

Ingredient Two: Branching

Branching involves partitioning the feasible region using a logical disjunction
such that:

• All optimal solutions are in one of the members of the partition.

• The solution to the current relaxation is not in any of the members of
the partition.

16



ISE 407 Lecture 26 17

Terminology

• If we picture the subproblems graphically, they form a search tree.

• Each subproblem is linked to its parent and eventually to its children.

• Eliminating a problem from further consideration is called pruning.

• The act of bounding and then branching is called processing.

• A subproblem that has not yet been considered is called a candidate for
processing.

• The set of candidates for processing is called the candidate list.

17



ISE 407 Lecture 26 18

Branch and Bound Tree

Key

x30 ≥ 1.0

x17 ≤ 0.0

x35 ≤ 0.0

x31 ≤ 0.0

x32 ≤ 0.0

x31 ≤ 0.0

x9 ≤ 0.0

x17 ≥ 1.0x19 ≥ 1.0

x19 ≥ 1.0

x3 ≤ 0.0

x30 ≥ 1.0

x11 ≤ 0.0

x22 ≤ 0.0

x28 ≤ 0.0

x31 ≥ 1.0

x35 ≥ 1.0

x9 ≤ 0.0

x9 ≤ 0.0

x31 ≥ 1.0

x9 ≤ 0.0

x9 ≥ 1.0

x19 ≤ 0.0

x19 ≤ 0.0

x3 ≥ 1.0

x30 ≤ 0.0

x7 ≤ 0.0

x38 ≤ 0.0

x19 ≥ 1.0

x28 ≥ 1.0

x16 ≤ 0.0

x9 ≥ 1.0

x9 ≥ 1.0

x19 ≤ 0.0

x32 ≥ 1.0

x30 ≤ 0.0

x17 ≥ 1.0

x8 ≥ 1.0

x7 ≤ 0.0

x21 ≤ 0.0

x7 ≥ 1.0

x8 ≥ 1.0

x38 ≥ 1.0

x38 ≥ 1.0

x7 ≥ 1.0

x28 ≤ 0.0

x8 ≤ 0.0

x32 ≥ 1.0

x16 ≤ 0.0

x20 ≥ 1.0

x9 ≤ 0.0

x32 ≤ 0.0

x34 ≤ 0.0

x15 ≥ 1.0

x8 ≤ 0.0

x16 ≥ 1.0

x21 ≥ 1.0

x9 ≥ 1.0

x17 ≤ 0.0 x15 ≤ 0.0

x38 ≤ 0.0

x22 ≥ 1.0

x16 ≥ 1.0

x11 ≥ 1.0

x28 ≥ 1.0

x9 ≥ 1.0

x34 ≥ 1.0

x20 ≤ 0.0

196.5

195.6

194.3

193.2 196.5

195.7192.8 190.3196.0

194.5 196.6

191.1 196.3 192.0 195.4196.0 194.6

197.3 195.0 194.3 196.4

196.6 194.6 196.0
Pruned

Candidate

196.8 193.5

194.6

197.2 192.8

199.2

198.0198.8

198.1198.6 197.2197.8

196.3198.2

Candidate

195.7

Infeasible

195.8

195.5

Pruned

Solution

195.0

196.1 195.6

196.0191.1

196.1194.3

196.1196.0

197.3196.8

197.0196.8 194.5195.4

195.3196.4 194.1196.6

196.1

197.2 196.4194.3

196.8194.3

197.0195.2 195.8

Figure 1: Final tree

18



ISE 407 Lecture 26 19

A Thousand Words

Figure 2: Tree after 400 nodes

19



ISE 407 Lecture 26 20

A Thousand Words

Figure 3: Tree after 1200 nodes

20



ISE 407 Lecture 26 21

A Thousand Words

Figure 4: Final tree

21



ISE 407 Lecture 26 22

Branch and Cut

• In practice, branching and cutting are usually integrated into a single
algorithm.

• In principle, the same bound improvement can be obtained by either
branching or cutting using the same disjunction, which creates a tradeoff.

– Cutting does not create additional subproblems, but the conditioning
of the matrix degrades when adding cuts.

– Branching creates additional subproblems, but does not tend to
degrade conditioning as much.

• The reasons that cutting generally degrades the conditioning can be
understood geometrically.

• Because cuts are obtained as combinations of existing inequalities, new
ones tend to be increasingly parallel to old ones.

• Eventually, this becomes such an issue that making further progres is
impossible.

22


