
Computational Optimization
ISE 407

Lecture 25

Dr. Ted Ralphs

ISE 407 Lecture 25 1

Reading for This Lecture

• Bertsimas 3.2-3.4

• S. Chandrasekaran and I. Ipsen, “Perturbation Theory for the Solution
of Systems of Linear Equations.”

1

ISE 407 Lecture 25 2

Linear Programming

• We consider solution of a linear program in standard form:

min c>x

s.t. Ax = b

x ≥ 0

where A ∈ Rm×n, c ∈ Rn, and b ∈ Rm.

• The most commonly used algorithm for solving this problem is the
simplex algorithm.

2

ISE 407 Lecture 25 3

Implementing the Simplex Method

“Naive” Implementation

1. Start with a basic feasible solution x̂ with indices B(1), . . . , B(m)
corresponding to the current basic variables.

2. Form the basis matrix B and compute p> = c>BB
−1 by solving p>B =

c>B.

3. Compute the reduced costs by the formula c̄j = cj − p>Aj. If c̄ ≥ 0,
then x̂ is optimal.

4. Select the entering variable j and obtain u = B−1Aj by solving the
system Bu = Aj. If u ≤ 0, the LP is unbounded.

5. Determine the step size θ∗ = min{i|ui>0}
x̂B(i)

ui
.

6. Determine the new solution and the leaving variable i.

7. Replace i with j in the list of basic variables.

8. Go to Step 1.

3

ISE 407 Lecture 25 4

Calculating the Basis Inverse

• Note that most of the effort in each iteration of the Simplex algorithm is
spent solving the systems

p>B = c>B

Bu = Aj

• If we knew B−1, we could solve both of these systems.

• Calculating B−1 quickly and accurately is the biggest challenge of
implementing the simplex algorithm.

• The full details of how to do this are beyond the scope of this course.

• We will take a cursory look at these issues in the rest of the chapter.

4

ISE 407 Lecture 25 5

Efficiency of the Simplex Method

• To judge efficiency, we calculate the number of arithmetic operations it
takes to perform the algorithm.

• To solve a system of m equations and m unknowns, it takes O(m3)
operations.

• To take the inner product of two n-dimensional vectors takes O(n)
operations (n multiplications and n additions).

• Hence, each iteration of the naive implementation of the Simplex method
takes O(m3 +mn) operations.

• We’ll try to improve upon this.

5

ISE 407 Lecture 25 6

Improving the Efficiency of Simplex

• Again, the matrix B−1 plays a central role in the simplex method.

• If we had B−1 available at the beginning of each iteration, we could
easily compute everything we need.

• Recall that B changes in only one column during each iteration.

• How does B−1 change?

• It may change a lot, but we can update it instead of recomputing it.

6

ISE 407 Lecture 25 7

Updating the Basis Inverse

• We have B−1B = I, so that B−1AB(i) is the ith unit vector ei.

• If B is the old basis and B̄ is the new one, then

B−1B̄ = [e1 · · · el−1 u el+1 · · · em]

=


1 u1

.
ul
... . . .
um 1



• We want to turn this matrix into I using elementary row operations.

• If we apply these same row operations to B−1, we will turn it into B̄−1.

7

ISE 407 Lecture 25 8

Representing Elementary Row Operations

• Performing an elementary row operation is the same as left-multiplying
by a specially constructed matrix.

• To multiply the jth row by β and add it to the ith row, take I and
change the (i, j)th entry to β.

• A sequence of row operations can similarly be represented as a matrix.

• Hence, we can change B−1 into B̄−1 by left-multiplying by a matrix Q
which looks like

Q =


1 −u1

ul.
1
ul... . . .
−um

ul
1



8

ISE 407 Lecture 25 9

The Revised Simplex Method

A typical iteration of the revised simplex method:

1. Start with a specified BFS x̂ and the associated basis inverse B−1.

2. Compute p> = c>BB
−1 and the reduced costs c̄j = cj − p>Aj.

3. If c̄ ≥ 0, then the current solution is optimal.

4. Select the entering variable j and compute u = B−1Aj.

5. If u ≤ 0, then the LP is unbounded.

6. Determine the step size θ∗ = min{i|ui>0}
x̂B(i)

ui
.

7. Determine the new solution and the leaving variable i.

8. Update B−1.

9. Go to Step 1.

9

ISE 407 Lecture 25 10

Some Notes on the Simplex Method

• One key element not described above is how to construct an initial
feasible basis.

• If we start with a feasible basis, each iteration of the simplex methods
ends with a new basic feasible solution (assuming nondegeneracy).

• This is all we need to prove the following result:

Theorem 1. Consider a linear program over a nonempty polyhedron
P and assume every basic feasible solution is nondegenerate. Then the
simplex method terminates after a finite number of iterations in one of
the following two conditions:

– We obtain an optimal basis and a corresponding optimal basic feasible
solution.

– We obtain a vector d ∈ Rn such that Ad = 0, d ≥ 0, and c>d < 0,
and the LP is unbounded.

10

ISE 407 Lecture 25 11

Pivot Selection

• The process of removing one variable and replacing from the basis and
replacing it with another is called pivoting.

• We have the freedom to choose the entering variable from among a list
of candidates.

• How do we make this choice?

• The reduced cost tells us the cost in the objective function for each unit
of change in the given variable.

• Intuitively, cj is the cost for the change in the variable itself and
−c>BB−1Aj is the cost of the compensating change in the other variables.

• This leads to the following possible rules:

– Choose the column with the most negative reduced cost.
– Choose the column for which θ∗|c̄j| is largest.

11

ISE 407 Lecture 25 12

Other Pivoting Rules

• In practice, sophisticated pivoting rules are used.

• Most try to estimate the change in the objective function resulting from
a particular choice of pivot.

• For large problems, we may not want to compute all the reduced costs.

• Remember that all we require is some variable with negative reduced
cost.

• It is not necessary to calculate all of them.

• There are schemes that calculate only a small subset of the reduced costs
each iteration.

12

ISE 407 Lecture 25 13

Simplex for Degenerate Problems

• If the current BFS is degenerate, then the step size might be limited to
zero (why?).

– This means that the next feasible solution is the same as the last.
– We can still form a new basis, however, as before.

• Even if the step-size is positive, we might end up with one or more basic
variables at level zero.

– In this case, we have to decide arbitrarily which variable to remove
from the basis.

– The new solution will be degenerate.

• Degeneracy can cause cycling, a condition in which the same feasible
solution is reached more than once.

• If the algorithm doesn’t terminate, then it must cycle.

13

ISE 407 Lecture 25 14

Anticycling and Bland’s Rule

• Bland’s pivoting rule:

– The entering variable is the one with the smallest subscript among
those whose reduced costs are negative.

– The leaving variable is the one with the smallest subscript among
those that are eligible to leave the basis.

• Bland’s rule guarantees that cycling cannot occur.

• We also don’t need to compute all the reduced costs.

14

ISE 407 Lecture 25 15

Numerical Considerations

• In the simplex algorithm, we are solving a sequence of closely related
systems of equations.

• The factorization we are using to solve each of these systems is updated
and round-off error accumulates.

• In practice, it is common to periodocially discard the basis factorization
and re-compute it from scratch to combat this problem.

• What factors affect the accuracy of solving just one of these systems
from scratch?

• Naturally, the condition number of the current basis is important.

• Can we interpret the condition number of the basis in geometric terms?

15

ISE 407 Lecture 25 16

The Geometry of Conditioning

• Consider again the geometric interperation of condition number of a
matrix A.

• Roughly speaking, it is the ratio of the largest to smallest axes of the
ellipsoid we get by pre-multiplying the points on a unit ball by A:

{Ax | x ∈ R, ‖x‖ = 1}

• Question: What affects the geometry of this ellipsoid?

16

ISE 407 Lecture 25 17

The Geometry of Conditioning

• Factors affecting the shape of the set {Ax | x ∈ R, ‖x‖ = 1}.

– The (relative) magnitude of the norms of of the rows of A.
– The “angles” between the rows.

• This is essentially because

|x>y| = ‖x‖‖y‖ cosβ

where β is the angle between x and y.

• Note that condition number is just the “worst case.”

• Using the formula, we can say something about how individual
components of the solution to a systems are affected by perturbation.

17

ISE 407 Lecture 25 18

The Geometry of Conditioning

• Let ri be the ith row of A−1.

• Then it is straightforward to see that if Ax = b, we have

xi = r>i b = ‖ri‖‖b‖ cosβi

where βi is the angle between ri and b.

• Let x̃ be the solution to Ax = b+ f for a given preturbation f .

• If ψi is the angle between ri and f , then we have

x̃i = xi + r>i f = xi + ‖ri‖‖f‖ cosψi

• Further, if xi 6= 0 and εb = ‖f‖/‖b‖, we have

x̃i − xi
xi

=
1

cosβi
εb cosψi

=
‖b‖
‖A‖‖x‖

‖x‖
xi
‖A‖‖ri‖εb cosψi

18

ISE 407 Lecture 25 19

The Geometry of Conditioning

• The results on the previous slide tell us how to assess the conditioning
of the problem of finding individual components of the solution.

• Note that just because a matrix A is ill-conditioned does not mean
that the problem of finding each individual component of the solution is
ill-conditioned.

– The condition number of the matrix is a worst-case measure over all
the component-wise problems.

– There is always one component that exhibits this worst-case behavior.

• The formula on the previous slide tells us that the relative condition of
the problem for component i is affected by

– the angle between ri and f
– the angle between ri and b

19

ISE 407 Lecture 25 20

The Geometry of Conditioning

20

