Computational Optimization ISE 407

Lecture 24

Dr. Ted Ralphs

Reading for This Lecture

- Miller and Boxer, Pages 128-134
- Forsythe and Moler, Sections 9-13

Scaling

• In the "bad" example from the last lecture, what caused the trouble?

- Essentially, coefficients were too far apart in "scale".
- What can we do about this?

Diagonal Equivalence

- \bullet Two matrices A and A' are diagonally equivalent if
 - $-A' = D_1^{-1}AD_2$
 - D_1 and D_2 are non-singular diagonal matrices
- \bullet A' is just A with the columns and rows scaled.
- For now, let us think of the elements of D_1 and D_2 as powers of 10 and assume this base for computations.
- In this case, the scaling merely changes the exponent.
- This operation does not change the significands (mantissas).

Computing with Scaled Matrices

- Notice that *diagonal equivalence* is an equivalence relation.
- Suppose we set $b' = D_1 b$ (similarly scaled)
- If the same sequence of pivots is used,
- The solutions to these systems will have the same significands:

$$A'x' = b'$$

$$Ax = b$$

They will differ only in their exponents.

What is the point?

- In Gaussian elimination, scaling alters the choice of pivot element.
- In fact, this can foil the partial pivoting strategy in some cases.
- Consider a scaled version of the previous bad example:

$$10x_1 + 10^6 x_2 = 1$$
$$x_1 + x_2 = 2$$

- Now the partial pivoting leads to the same wrong answer as before..
- Scaling is a more direct approach, since it changes the condition number of the matrix.

Finding a Good Scaling

- A scaling that leads to a small condition number is likely to result in good numerical stability.
- Finding a scaling that minimizes the condition number is difficult in general, but it can be done for certain norms (not ℓ^2).
- ullet For the ℓ^{∞} norm, for example, we can find the optimal scaling.
- It can be shown that the condition number with the ℓ^{∞} norm is within a factor of n of the condition number with the ℓ^2 norm.
- This is acceptable.

Another approach

• A matrix is said to be *row equilibrated* if the maximum entry in each row is between 10^{-1} and 1.

- Column equilibrated is defined similarly.
- A matrix is *equilibrated* if it is both row and column equilibrated.
- It is unknown how to "optimally" equilibrate a matrix.
- There are heuristics for doing so approximately.
- This seems to be a good approach.

Iterative Improvement

• Iterative Procedure

- Solve $Ax_1 = b$.
- Compute the residual $r_1 = b Ax_1$.
- Solve the system $Az_1 = r_1$.
- Set $x_2 = x_1 + z_1$.
- Note that r_i must be computed with more precision than the rest of the computation.

Example

Convergence of Iterative Improvement

• The error in x_1 is related to r_1 by

$$e_1 = x_1 - A^{-1}b = A^{-1}(Ax_1 - b) = -A^{-1}r_1$$

- Hence, $||e_1|| \le ||A^{-1}|| ||r_1||$.
- Also, $||r_1|| \le 10^{-t} ||A|| ||x_1||$.
- So finally, $||e_1|| \le 10^{-t} \operatorname{cond}(A) ||x_1||$.
- If $cond(A) \approx 10^p$, $||e_1||/||x_1|| \approx 10^{p-t}$.

Consequences

• With some care, we can assure that $||z_1||/||x_1|| \approx ||e_1||/||x_1|| \approx 10^{p-t}$.

- Hence, $cond(A) \approx 10^t ||z_1|| / ||x_1||$.
- Furthermore, the number of iterations needed to compute to t digits of precision is $t/(\log(||x_1||/||z_1||))$.
- If $p \ge t$, we're out of luck.

Sparsity

- Sparse matrices allow faster calculation.
- ullet If A is sparse, we attempt to maintain that sparsity in the LU factorization.
- Markowitz's Rule
 - Let p_i be the number of nonzeros in row i and q_j the number of nonzeros in column j.
 - Pivot on the element a_{ij} such that $(p_i 1)(q_j 1)$ is minimized.
- Note that this is at odds with pivoting rules to limit round-off error.

Another Procedure

- ullet Note that if A has no nonzeros above the diagonal in column j, then this pattern is carried into L and U.
- ullet Hence, we try to make A look as much like a lower diagonal matrix as possible through permutation.
- This has good results in practice, but also must be traded off against round-off error.

A Word About Zero Tolerances

- The number zero plays a central role in these issues.
- Numbers that are very close to zero tend to cause numerical difficulties.
- Values that appear nonzero because of round-off, but whose true value is zero are especially dangerous.
- For this reason, practitioners usually use zero tolerances.
- This is a limit below which a value is taken to be exactly zero.
- Usually, there are several different tolerances.
- Choosing them is problematic.

Summary

- Limiting round-off error is an inexact science.
- There is some theory to guide us, but techniques based on the theory don't always work.
- You have to know your problem!
- Always remember the difference between conditioning and stability!
- Formulation can make a big difference to conditioning!!
- Changing the algorithm can improve stability.