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Reading for This Lecture

• Miller and Boxer, Pages 128-134

• Forsythe and Moler, Sections 9-13
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Scaling

• In the “bad” example from the last lecture, what caused the trouble?

• Essentially, coefficients were too far apart in “scale”.

• What can we do about this?
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Diagonal Equivalence

• Two matrices A and A′ are diagonally equivalent if

– A′ = D−11 AD2

– D1 and D2 are non-singular diagonal matrices

• A′ is just A with the columns and rows scaled.

• For now, let us think of the elements of D1 and D2 as powers of 10 and
assume this base for computations.

• In this case, the scaling merely changes the exponent.

• This operation does not change the significands (mantissas).
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Computing with Scaled Matrices

• Notice that diagonal equivalence is an equivalence relation.

• Suppose we set b′ = D1b (similarly scaled)

• If the same sequence of pivots is used,

• The solutions to these systems will have the same significands:

A′x′ = b′

Ax = b

• They will differ only in their exponents.

4



ISE 407 Lecture 24 5

What is the point?

• In Gaussian elimination, scaling alters the choice of pivot element.

• In fact, this can foil the partial pivoting strategy in some cases.

• Consider a scaled version of the previous bad example:

10x1 + 106x2 = 1

x1 + x2 = 2

• Now the partial pivoting leads to the same wrong answer as before..

• Scaling is a more direct approach, since it changes the condition number
of the matrix.
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Finding a Good Scaling

• A scaling that leads to a small condition number is likely to result in
good numerical stability.

• Finding a scaling that minimizes the condition number is difficult in
general, but it can be done for certain norms (not `2).

• For the `∞ norm, for example, we can find the optimal scaling.

• It can be shown that the condition number with the `∞ norm is within
a factor of n of the condition number with the `2 norm.

• This is acceptable.
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Another approach

• A matrix is said to be row equilibrated if the maximum entry in each row
is between 10−1 and 1.

• Column equilibrated is defined similarly.

• A matrix is equilibrated if it is both row and column equilibrated.

• It is unknown how to “optimally” equilibrate a matrix.

• There are heuristics for doing so approximately.

• This seems to be a good approach.

7



ISE 407 Lecture 24 8

Iterative Improvement

• Iterative Procedure

– Solve Ax1 = b.
– Compute the residual r1 = b−Ax1.
– Solve the system Az1 = r1.
– Set x2 = x1 + z1.
– Note that ri must be computed with more precision than the rest of

the computation.
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Example
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Convergence of Iterative Improvement

• The error in x1 is related to r1 by

e1 = x1 −A−1b = A−1(Ax1 − b) = −A−1r1

• Hence, ‖e1‖ ≤ ‖A−1‖‖r1‖.

• Also, ‖r1‖ ≤ 10−t‖A‖‖x1‖.

• So finally, ‖e1‖ ≤ 10−t cond(A)‖x1‖.

• If cond(A) ≈ 10p, ‖e1‖/‖x1‖ ≈ 10p−t.
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Consequences

• With some care, we can assure that ‖z1‖/‖x1‖ ≈ ‖e1‖/‖x1‖ ≈ 10p−t.

• Hence, cond(A) ≈ 10t‖z1‖/‖x1‖.

• Furthermore, the number of iterations needed to compute to t digits of
precision is t/(log(‖x1‖/‖z1‖)).

• If p ≥ t, we’re out of luck.
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Sparsity

• Sparse matrices allow faster calculation.

• If A is sparse, we attempt to maintain that sparsity in the LU
factorization.

• Markowitz’s Rule

– Let pi be the number of nonzeros in row i and qj the number of
nonzeros in column j.

– Pivot on the element aij such that (pi − 1)(qj − 1) is minimized.

• Note that this is at odds with pivoting rules to limit round-off error.
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Another Procedure

• Note that if A has no nonzeros above the diagonal in column j, then
this pattern is carried into L and U .

• Hence, we try to make A look as much like a lower diagonal matrix as
possible through permutation.

• This has good results in practice, but also must be traded off against
round-off error.
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A Word About Zero Tolerances

• The number zero plays a central role in these issues.

• Numbers that are very close to zero tend to cause numerical difficulties.

• Values that appear nonzero because of round-off, but whose true value
is zero are especially dangerous.

• For this reason, practitioners usually use zero tolerances.

• This is a limit below which a value is taken to be exactly zero.

• Usually, there are several different tolerances.

• Choosing them is problematic.
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Summary

• Limiting round-off error is an inexact science.

• There is some theory to guide us, but techniques based on the theory
don’t always work.

• You have to know your problem!

• Always remember the difference between conditioning and stability!

• Formulation can make a big difference to conditioning!!

• Changing the algorithm can improve stability.
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