Computational Optimization ISE 407

Lecture 2

Dr. Ted Ralphs

Reading for this Lecture

- "All You Ever Wanted to Know About Memory", Ulrich Drepper
- "Introduction to High Performance Computing", V. Eijkhout, Chapter 1.
- "Introduction to High Performance Computing for Scientists and Engineers," G. Hager and G. Wellein, Chapter 3.

Basic Architecture

Figure 1: Basic architecture of a modern computer

Source: https://lwn.net/Articles/250967

Basic elements include

- CPU (Central processing unit)
- RAM (Random access memory)
- Storage
- Peripherals

The Memory Bottleneck

- There is an obvious bottleneck between CPU and memory.
- The bottleneck can be partially overcome with additional memory controllers.
- This increases complexity and expense.

Figure 2: Adding memory controllers

Another Option

- A second option is to attach each CPU to local memory.
- This creates a small parallel architecture with an associated interconnection topology.
- All memory appears local, but access times are not uniform (called a NUMA architecture).

Figure 3: NUMA Architecture

Putting it Together

 Today's architectures consist of multiple processors, each with multiple cores.

• The resulting memory hierarchy is very complex and we only consider the simple case of a CPU with a single core for now.

Figure 4: High-level view of entire architecture

Storage Hierarchy

• Even with the improvements discussed so far, there is a large gap between processor speeds and memory speeds.

- It is possible to produce faster memory, but it's expensive and takes much more physical space.
- As a compromise, we add small fast memory, called *cache*, for storing the most important data.
- There are stypically separate caches for instructions and data.

How Cache Works: Library Analogy

- Main memory is the shelf in the library filled with many books.
- The register is the book you have open: immediate access, but only one book.
- Level 1 cache are the books sitting on your desk: faster access, small capacity.
- Level 2 cache are the books on your book shelves.

• ...

Access Times

- Here are some representative access times
 - Register: 1 cycle
 - L1d: 3 cycles (64 kB)
 - L2: 14 cycles (512 kB)
 - L3: Usually shared, 6 MB
 - RAM: 240 cycles
- It is easy to see why it's important to understand the hierarchy.

Access Times Exemplified

```
function test_file(path)
open(path) do file

# Go to 1000 th byte of file and read it
seek(file, 1000)
read(file, UInt8)
end
end
```

```
julia> @time test_file("Lecture2.tex")
    0.011654 seconds (16 allocations: 1.141 KiB)

julia> @time test_file("Lecture2.tex")
    0.000714 seconds (16 allocations: 1.141 KiB)
```

- This is the time access a single random byte in a file on my laptop.
- The drop in time when running the function again is because the file has now been cached.

Access Times Exemplified

```
function random_access(data::Vector{UInt}, N::Integer)
n = rand(UInt)
mask = length(data) - 1
@inbounds for i in 1:N
n = (n >>> 7) \( \sqrt{data} \) data[n & mask + 1]
end
return n
end
```

```
julia> @time random_access(data, 1000000)
    0.159546 seconds
```

- This is the time to access 1000000 random bytes from an array.
- On my laptop, accessing random data in memory is roughly 70000x faster than accessing random bytes from a file.

Access Times Exemplified

```
function linear_access(data::Vector{UInt}, N::Integer)
n = rand(UInt)
mask = length(data) - 1
@inbounds for i in 1:N
n = (n >>> 7) \( \sqrt{} \) data[i \( \& \) mask + 1]
end
return n
end
```

```
julia> @time linear_access(data, 1000000)
    0.004439 seconds
```

On my laptop, accessing data linearly in memory is roughly 35x faster than accessing data randomly.

How Does Cache Work?

- The big question is what do we put in the cache?
- Obviously, we want data that we'll be likely to need soon.
- This is very difficult to predict!
- How does cache works work with main memory?
 - When the CPU needs data, it first checks the cache.
 - If it finds what it needs, great! A cache hit.
 - Otherwise (a *cache miss*), it retrieves what it need from main memory and ejects something to make room.
 - Data is always fetched in blocks of a certain size (a cache line), even when only part of the block is needed.
- How do we predict what data will be used?
 - Temporal locality: Data used once will tend to be used again soon
 ⇒ keep the most recently accessed data items closer to the CPU
 - Spacial locality: Data near data that has been recently used is likely to be used soon ⇒ move contiguous closer to the CPU.

Example 1

Cache (4 lines, 1 byte per line);
Access time 1 cycle

Access time 1 cycle							
index	valid	tag	data				
00							
01							
10							
11							

RAM Access time: 100 cycles

address	data
000000	data(0)
0000 <mark>01</mark>	data(1)
000010	data(2)
0000 11	data(3)
000100	data(4)
0001 <mark>01</mark>	data(5)
000110	data(6)
0001 11	data(7)
0010 <mark>00</mark>	data(8)
0010 <mark>01</mark>	data(9)
0010 <mark>10</mark>	data(10)
0010 11	data(11)

Core needs to access numbers in RAM in the following order

data	0	1	2	3	4	3	4	11
hit?								
miss?								
total cycles								

cache miss ratio:

Example 2

Cache (4 lines, 2 bytes per line)

Access time. I cycle								
index	valid	tag	D0	D1				
00								
01								
10								
11								

RAM Access time: 100 cycles

address	data
000000	data(0)
000001	data(1)
000 01 0	data(2)
000 01 1	data(3)
000100	data(4)
000101	data(5)
000 11 0	data(6)
000 11 1	data(7)
001 <mark>00</mark> 0	data(8)
001 <mark>00</mark> 1	data(9)
001 <mark>01</mark> 0	data(10)
001 01 1	data(11)

Core needs to access numbers in RAM in following order

data	0	1	2	3	4	3	4	11
hit?								
miss?								
cycles took								

cache miss ratio:

Some Further Experiments

- The sizes of the various caches can be queried (getconf -a | grep CACHE or with the Cpuld package), but we can also derive them experimentally.
- On my laptop, the cache sizes are:
 - Level 1: 2^{12} 64-bit integers
 - Level 2: 2^{15} 64-bit integers
 - Level 3: 2^{20} 64-bit integers
- The following data were generated by random accesses into arrays of different sizes with the random_access function from earlier.

The plateaus correspond exactly to the sizes of the caches.

Memory Layout

• For more complex data structures, it's important to keep in mind the layout in memory.

- In general languages vary in their default memory layout for multidimensional vectors according to convention.
 - Julia is a column-ordered language.
 - C/C++ is row-ordered.
 - Numpy in Python is is row-ordered (for general lists, the question doesn't make sense).
- This means that to loop over the elements of a multi-dimensional array in Julia, the outer-most loop should increment the last index.
- The inner-most loop should increment the first index.
- In C/C++, the opposite in true for statically allocated memory.
- Dynamically allocated memory is laid out manually and so can be laid out either way.

Impact of Memory Layout

- Consider the time to initialize a matrix.
- In Julia, matrices are stored column-wise.
- To move through the matrix element-by-element as the elements are laid out in memory, we iterate through the indices in order.
- We consider initializing column-wise and row-wise.

Matrix Initialization in Julia

```
function init_col_ordered(x::Vector{T}) where T
 1
          inds = axes(x, 1)
 3
          out = similar(Array{T}, inds, inds)
          \quad \text{for i} \in \text{inds}
 4
              out[:, i] = x
 5
 6
          end
          return out
 8
      end
 9
10
      function init_row_ordered(x::Vector{T}) where T
11
          inds = axes(x, 1)
12
          out = similar(Array{T}, inds, inds)
13
          for i \in inds
              out[i, :] = x
14
15
          end
16
          return out
17
      end
```

```
julia> x = zeros(10000);

julia> @time init_col_ordered(x);
  1.808912 seconds (2 allocations: 762.940 MiB, 9.40% gc time)

julia> @time init_row_ordered(x);
  8.323898 seconds (14.71 k allocations: 763.676 MiB, 0.14% gc time)
```

Column ordered initialization is roughly four times faster.

Matrix Multiplication

- Now consider multiplying two matrices.
- A straightforward implementation in Julia would be

```
function matmult_naive!(C, A, B)

# No checking for proper types or dimension match

fill!(C, 0)

for i ∈ 1:size(A, 1), j ∈ 1:size(B, 2), k ∈ 1:size(A, 2)

C[i, j] += A[i, k] * B[k, j]

end

return(C)

end

end
```

```
julia> A = rand(1:10, 2^11, 2^11);
julia> B = rand(1:10, 2^11, 2^11);
julia> C = similar(A);
julia> Obtime matmult_naive!($C, $A, $B);
102.603 s (0 allocations: 0 bytes)
```

• Slow... because it is most natural to access one matrix row-wise and the other matrix column-wise, but this is bad.

The Improved Code

• What if we transpose one of the matrices first?

```
function matmult_trans!(C, A, B)
     1
                                                               fill!(C, 0)
                                                               T = similar(A)
                                                               @inbounds for i \in axes(A, 1), j \in axes(A, 2)
     4
                                                                                               T[i, j] = A[j, i]
                                                               end
     6
                                                               Consider the distance of the 
     7
                                                                                               Cij = zero(eltype(C))
     8
                                                                                               for k \in axes(A, 2)
     9
                                                                                                                                Cij += T[k, i]*B[k, j]
10
                                                                                               end
11
                                                                                               C[i,j] = Cij
12
                                                               end
13
                              end
14
```

```
julia> @btime matmult_trans!($C, $A, $B)
5.544 s (2 allocations: 32.00 MiB)
```

 Although we're spending time to allocate memory and transpose the matrix first, it's much faster!

A Little More on Caching

- We may able to avoid transposing if we exploit how cache works.
- As we know, data is cached in lines that have a fixed length.
- Therefore, if we copy one element from an array into the cache, we will also get the next few elements for free.
- To get maximum performance, we should use all the data in the cache that we can before it gets evicted.
- In the matrix example, this means that we should do several inner products at the same time.

Cache-Aware Matrix Multiplication

```
function matmult_cache!(C, A, B)
1
        #Assume square matrices here to keep it simple
2
        fill!(C, 0)
3
        S = Int(cachelinesize()/sizeof(eltype(A)))
4
        N = size(A, 1) \# Assume that N is a multiple of S
5
        Qinbounds Qfastmath for r \in 1:S:N, c \in 1:S:N, k \in 1:S:N
6
            for c2 \in c:c+S-1, k2 \in k:k+S-1,
7
                Bkc = B[k2, c2]
8
                 for r2 \in r:r+S-1
9
                     C[r2, c2] += A[r2, k2]*Bkc
10
                 end
11
            end
12
        end
13
    end
14
```

```
julia> @btime matmult_cache!($A, $B, $C);
13.586 s (0 allocations: 0 bytes)
```

- We first compute the number of elements that a cache line can hold.
- Surprisingly slower than matmult_trans! , probably due to loop overhead.
- Perhaps we can combine the two ideas....

Cache-Aware Matrix Multiplication

```
function matmult_cache!(C, A, B)
 1
          #Assume square matrices here
 3
          fill!(C, 0)
          T = similar(A)
 4
 5
          Quinbounds for i \in axes(A, 1), j \in axes(A, 2)
 6
              T[i, j] = A[j, i]
          end
 8
          S = Int(cachelinesize()/sizeof(eltype(A)))
 9
          N = size(A, 1)
10
          Oinbounds Ofastmath for r \in 1:S:N, c \in 1:S:N, k \in 1:S:N
11
              for c2 \in c:c+S-1, r2 \in r:r+S-1,
12
                  Crc = 0
13
                  for k2 \in k:k+S-1
                       Crc += A[k2, r2]*B[k2, c2]
14
15
                  end
                  C[r2, c2] = Crc
16
17
              end
18
          end
19
      end
```

```
julia> @btime matmult_cache!($A, $B, $C);
6.089 s (2 allocations: 32.00 MiB)
```

- An improvement, but no better than the naive transpose method.
- Are other memory tricks we can exploit? Yes!

Vectorization

- To allow for computations on data that doesn't fit in 64-bit registers, CPUs now have instructions that operate on special "wide registers".
- Typically, a wide register holds 4 64-bit numbers and are only utilized in very specific circumstances.
- The most common is a loop with fixed length and no branches where order doesn't matter.

- Note the vector instructions.
- The native code for the non-static vector is almost 500 lines!!

Vectorization Example

```
function sum_nosimd(x::Vector)
1
       n = zero(eltype(x))
        for i in eachindex(x)
3
            n += x[i]
4
       end
5
        return n
6
   end
    function sum simd(x::Vector)
8
        n = zero(eltype(x))
9
        # By removing the bounds check, we allow automatic SIMD
10
       @inbounds for i in eachindex(x)
11
            n += x[i]
12
    end
13
       return n
14
   end
15
```

```
julia> data = rand(UInt64, 4096) #Vector should fit in cache
julia> @btime sum_nosimd(data)
    2.233 µs (1 allocation: 16 bytes)
julia> @btime sum_simd(data)
    220.968 ns (1 allocation: 16 bytes)
```

Vectorization and Floating Point

- Suppose we want to sum the elements in an array x of 8 elements.
- In a non-vectorized loop, the result would be

```
(((((((x[1]+x[2]) + x[3]) + x[4]) + x[5]) + x[6]) + x[7] + x[8])
```

• With vectorization, the sum would be done in a different order

```
((((x[1]+x[5]) + (x[2] + x[6])) + (x[4]+x[7])) + (x[5] +x[8]))
```

- This is fine if the addition operator can be assumed commutative, but recall that floating point addition is not commutative!
- For this reason, loops involving float operations will not be autovectorized in general.

Auto-Vectorization

- If there was a way that we could indicate that the order of operations within the loop doesn't matter, then the compiler could auto-vectorize.
- There is a package called LoopVectorization that allows just that.

```
function matmult_avx!(C, A, B)

@avx for m ∈ axes(A,1), n ∈ axes(B,2)

Cmn = zero(eltype(C))

for k ∈ axes(A,2)

Cmn += A[m,k] * B[k,n]

end

C[m,n] = Cmn

end

end

end

end

end

end

end
```

```
julia> @btime matmult_avx!($C, $A, $B);
  3.670 s (0 allocations: 0 bytes)
julia> @btime $A*$B;
  4.726 s (8 allocations: 32.00 MiB)
```

With one macro, we achieve 30x speed-up with no manual optimization!

More Results

```
julia> A = rand(1:10, 2^10, 2^10);
julia> B = rand(1:10, 2^10, 2^10);
julia > C = rand(1:10, 2^10, 2^10);
julia> @btime matmult_naive!($C, $A, $B);
  6.974 s (0 allocations: 0 bytes)
julia> @btime matmult_trans!($C, $A, $B);
  572.207 ms (2 allocations: 8.00 MiB)
julia> @btime matmult_avx!($C, $A, $B);
  381.784 ms (0 allocations: 0 bytes)
julia > Obtime $A*$B;
  571.936 ms (8 allocations: 8.00 MiB)
julia > A = rand(1:10, 2^8, 2^8)
julia> B = rand(1:10, 2^8, 2^8)
julia > C = rand(1:10, 2^8, 2^8)
julia> @btime matmult_naive!($C, $A, $B);
 25.747 ms (0 allocations: 0 bytes)
julia> @btime matmult_trans!($C, $A, $B);
 4.686 ms (2 allocations: 512.08 KiB)
julia> @btime matmult_avx!($C, $A, $B);
  3.133 ms (0 allocations: 0 bytes)
julia > Obtime $A*$B
  6.940 ms (8 allocations: 512.41 KiB)
```

- Working with matrices of size 2^{10} is (relatively) faster, due to the Level 2 cache size.
- Note in the results that the native multiplication seems to be using the same trick of taking the transpose, but vectorization is still faster.

Different Integer Types

- For smaller integer types, the results look a bit different.
- matmult_cache! now dominates matmult_trans!, probably due to the larger number of elements per cache line.

```
julia> B = rand(UInt8(0):UInt8(1), 2^6, 2^6);
julia> A = rand(UInt8(0):UInt8(1), 2^6, 2^6);
julia> C = similar(A);

julia> @btime matmult_trans!($C, $B, $A)
    141.100 μs (1 allocation: 4.19 KiB)

julia> @btime matmult_cache!($C, $B, $A)
    73.400 μs (1 allocation: 4.19 KiB)

julia> @btime matmult_avx!($C, $B, $A)
    6.940 μs (0 allocations: 0 bytes)
```

Other Issues Related to Cache: Memory Alignment

- Because data is always moved in chunks to the cache, you can think of the memory as being divided into chunks the size of a cache line.
- Avoiding data structures that result in object representations straddling a cache-line boundary is another way to improve performance.
- The data structure must fit in cache, otherwise cache misses dominate.

```
function alignment_test(data::Vector{UInt}, offset::Integer)
1
         n = rand(UInt) # Jump randomly around the memory.
         mask = (length(data) - 9) \vee 7
 3
 4
         GC. Opreserve data begin # protect the array from moving in memory
             ptr = pointer(data)
             iszero(UInt(ptr) & 63) || error("Array not aligned")
 6
             ptr += (offset & 63)
 8
             for i in 1:4096
                  n = (n >>> 7) \leq unsafe_load(ptr, (n & mask + 1) % Int)
9
10
             end
11
          end
12
         return n
13
     end
     data = rand(UInt, 256 + 8) # Vector must fit in cache in order to see effect
14
```

```
julia> @btime alignment_test(data, 0)
  18.300 μs (0 allocations: 0 bytes)
julia> @btime alignment_test(data, 60)
  36.300 μs (0 allocations: 0 bytes)
```

Memory Alignment for Structs

- Alignment issues don't usually arise in practice because compilers usually take care of them automatically.
- For examples, if we create a 7-byte data structure and query, it's layout, in Julia, is reported to take up 8 bytes.
- Because this padding wastes memory (and for other reasons), it is often better to use a "struct of arrays" and than an "array of structs."

```
struct AlignmentTest
1
        a::UInt32 # 4 bytes +
       b::UInt16 # 2 bytes +
3
        c::UInt8  # 1 byte = 7 bytes?
4
   end
5
6
   struct AlignmentTestVector
        a::Vector{UInt32}
8
       b::Vector{UInt16}
9
       c::Vector{UInt8}
10
   end
11
```

Memory Alignment for Structs

Julia allows you to query the memory layout in order to probe these kinds of issues.

```
function get_mem_layout(T)
for fieldno in 1:fieldcount(T)
println("Name: ", fieldname(T, fieldno), "\t",
"Size: ", sizeof(fieldtype(T, fieldno)), " bytes\t",
"Offset: ", fieldoffset(T, fieldno), " bytes.")
end
end
```

```
julia> sizeof(AlignmentTest)
Size of AlignmentTest: 8 bytes.

julia> get_mem_layout(AlignmentTest)
Name: a Size: 4 bytes Offset: 0 bytes.
Name: b Size: 2 bytes Offset: 4 bytes.
Name: c Size: 1 bytes Offset: 6 bytes.
```

Arrays of Structs

- Another reason why a struct of arrays is better than an array of structs is that a struct of arrays allows for vectorization.
- This is illustrated in the following experiment.

```
julia> Base.rand(::Type{AlignmentTest}) = AlignmentTest(rand(UInt32), rand(UInt16), rand(UInt8))

julia> N = 1_000_000

julia> array_of_structs = [rand(AlignmentTest) for i in 1:N];

julia> struct_of_arrays = AlignmentTestVector(rand(UInt32, N), rand(UInt16, N), rand(UInt8, N));

julia> @btime sum(x -> x.a, array_of_structs)
    485.000 μs (1 allocation: 16 bytes)

julia> @btime sum(struct_of_arrays.a);
    93.800 μs (1 allocation: 16 bytes)
```

Memory Allocation

- We have so far avoided the issue of how memory is actually allocated/reserved and how it is deallocated/released again.
- In low-level languages like C, this is done by explicit commands.
- The C command malloc() simply asks for a raw block of memory to be allocated and the corresponding command free() deallocates it.
- In high-level languages (Julia, Python, Matlab), the memory allocation is hidden, but it's still important to be aware that it has a cost.
- These languages also have an automated system for memory deallocation, often called *garbage collection*.
- Internal pointers are kept for all memory blocks and when the user code no longer has access, the memory is deallocated.

```
myarray = [1, 2, 3, 4]
myarray = nothing
```

- After the pointer is changed, the memory is deallocated automatically.
- When the same happens in C, it results in a *memory leak*.

Cost of Memory Allocation

```
function increment(x::Vector{<:Integer})</pre>
1
        y = similar(x)
2
        @inbounds for i in eachindex(x)
3
             y[i] = x[i] + 1
4
        end
5
        return y
6
    end
8
    function increment!(x::Vector{<:Integer})</pre>
9
        Qinbounds for i in eachindex(x)
10
             x[i] = x[i] + 1
11
        end
12
     return x
13
    end
14
```

```
julia> data = rand(UInt, 2^10);
julia> Obtime increment(data);
  942.222 ns (1 allocation: 8.13 KiB)
julia> Obtime increment!(data);
  77.463 ns (0 allocations: 0 bytes)
```

Stack Versus Heap

- The program has access to two different blocks of RAM.
 - The stack is scratch space (generally of a fixed size) pre-allocated at the beginning of execution and can be accessed only in a FIFO manner.
 - The heap is memory memory available for dynamic allocation during execution.
- The stack is used to store function parameters, return addresses, local variables.
- Any data whose size is not too big and is known at compile time and whose value won't change can be stored on the stack.
- Stack memory is *much* cheaper to maintain, since there is only one pointer (the stack pointer), whose value changes by one unit at a time.
- On the heap, each block must be allocated/deallocated and has a separate pointer.
- Accessing memory inside the block requires pointer arithmetic.
- All in all, heap memory is relatively much more expensive.

Assembly for Heap Allocation

```
abstract type AllocatedInteger end
mutable struct HeapAllocated <: AllocatedInteger
x::Int
end
```

```
julia> @code_native debuginfo=:none HeapAllocated(1)
       .text
      pushq %rbx
      movq %rsi, %rbx
      movq %fs:0, %rdi
      addq $-15712, %rdi # imm = 0xC2A0
      movabsq $jl_gc_pool_alloc, %rax
                        # imm = 0x578
      movl $1400, %esi
      movl $16, %edx
      callq *%rax
      movabsq $140128568651936, %rcx # imm = 0x7F72398EB0A0
      movq %rcx, -8(%rax)
      movq %rbx, (%rax)
      popq %rbx
      retq
            (%rax)
      nopl
```

Assembly for Stack Allocation

```
struct StackAllocated <: AllocatedInteger
    x::Int
end

Base.:+(x::Int, y::AllocatedInteger) = x + y.x
Base.:+(x::AllocatedInteger, y::AllocatedInteger) = x.x + y.x</pre>
```