
Computational Optimization
ISE 407

Lecture 2

Dr. Ted Ralphs

ISE 407 Lecture 2 1

Reading for this Lecture

• “All You Ever Wanted to Know About Memory”, Ulrich Drepper

• “What Scientists Must Know About Hardware to Write Fast Code,” J.
Nissen ⇐ This lecture borrows copiously from this article

• “Introduction to High Performance Computing”, V. Eijkhout, Chapter 1.

• “Introduction to High Performance Computing for Scientists and
Engineers,” G. Hager and G. Wellein, Chapter 3.

1

ISE 407 Lecture 2 2

Basic Architecture

Figure 1: Basic architecture of a modern computer
Source: https://lwn.net/Articles/250967

Basic elements include

• CPU (Central processing unit)

• RAM (Random access memory)

• Storage

• Peripherals

2

ISE 407 Lecture 2 3

The Memory Bottleneck

• There is an obvious bottleneck between CPU and memory.

• The bottleneck can be partially overcome with additional memory
controllers.

• This increases complexity and expense.

Figure 2: Adding memory controllers

Source: https://lwn.net/Articles/250967

3

ISE 407 Lecture 2 4

Another Option

• A second option is to attach each CPU to local memory.

• This creates a small parallel architecture with an associated
interconnection topology.

• All memory appears local, but access times are not uniform (called a
NUMA architecture).

Figure 3: NUMA Architecture

Source: https://lwn.net/Articles/250967

4

ISE 407 Lecture 2 5

Putting it Together

• Today’s architectures consist of multiple processors, each with multiple
cores.

• The resulting memory hierarchy is very complex and we only consider
the simple case of a CPU with a single core for now.

Figure 4: High-level view of entire architecture

Source: https://lwn.net/Articles/250967

5

ISE 407 Lecture 2 6

Storage Hierarchy

• Even with the improvements discussed so far, there is a large gap between
processor speeds and memory speeds.

• It is possible to produce faster memory, but it’s expensive and takes
much more physical space.

• As a compromise, we add small fast memory, called cache, for storing
the most important data.

• There are stypically separate caches for instructions and data.

Source: https://lwn.net/Articles/250967

6

ISE 407 Lecture 2 7

How Cache Works: Library Analogy

• Main memory is the shelf in the library filled with many books.

• The register is the book you have open: immediate access, but only one
book.

• Level 1 cache are the books sitting on your desk: faster access, small
capacity.

• Level 2 cache are the books on your book shelves.

• ...

7

ISE 407 Lecture 2 8

Access Times

• Here are some representative access times

– Register: 1 cycle
– L1d: 3 cycles (64 kB)
– L2: 14 cycles (512 kB)
– L3: Usually shared, 6 MB
– RAM: 240 cycles

• It is easy to see why it’s important to understand the hierarchy.

8

ISE 407 Lecture 2 9

Access Times Exemplified

1 function test_file(path)

2 open(path) do file

3 # Go to 1000'th byte of file and read it

4 seek(file, 1000)

5 read(file, UInt8)

6 end

7 end

julia> @time test_file("Lecture2.tex")

0.011654 seconds (16 allocations: 1.141 KiB)

julia> @time test_file("Lecture2.tex")

0.000714 seconds (16 allocations: 1.141 KiB)

• This is the time access a single random byte in a file on my laptop.

• The drop in time when running the function again is because the file has
now been cached.

9

ISE 407 Lecture 2 10

Access Times Exemplified

1 function random_access(data::Vector{UInt}, N::Integer)

2 n = rand(UInt)

3 mask = length(data) - 1

4 @inbounds for i in 1:N

5 n = (n >>> 7) Y data[n & mask + 1]

6 end

7 return n

8 end

julia> @time random_access(data, 1000000)

0.159546 seconds

• This is the time to access 1000000 random bytes from an array.

• On my laptop, accessing random data in memory is roughly 70000x faster
than accessing random bytes from a file.

10

ISE 407 Lecture 2 11

Access Times Exemplified

1 function linear_access(data::Vector{UInt}, N::Integer)

2 n = rand(UInt)

3 mask = length(data) - 1

4 @inbounds for i in 1:N

5 n = (n >>> 7) Y data[i & mask + 1]

6 end

7 return n

8 end

julia> @time linear_access(data, 1000000)

0.004439 seconds

On my laptop, accessing data linearly in memory is roughly 35x faster than
accessing data randomly.

11

ISE 407 Lecture 2 12

How Does Cache Work?

• The big question is what do we put in the cache?

• Obviously, we want data that we’ll be likely to need soon.

• This is very difficult to predict!

• How does cache works work with main memory?

– When the CPU needs data, it first checks the cache.
– If it finds what it needs, great! A cache hit.
– Otherwise (a cache miss), it retrieves what it need from main memory

and ejects something to make room.
– Data is always fetched in blocks of a certain size (a cache line), even

when only part of the block is needed.

• How do we predict what data will be used?

– Temporal locality: Data used once will tend to be used again soon
⇒ keep the most recently accessed data items closer to the CPU

– Spacial locality: Data near data that has been recently used is likely
to be used soon ⇒ move contiguous closer to the CPU.

12

ISE 407 Lecture 2 13

Example 1

Cache (4 lines, 1 byte per line);
Access time 1 cycle

index valid tag data

00
01
10
11

RAM
Access time: 100 cycles

address data

000000 data(0)

000001 data(1)

000010 data(2)

000011 data(3)

000100 data(4)

000101 data(5)

000110 data(6)

000111 data(7)

001000 data(8)

001001 data(9)

001010 data(10)

001011 data(11)

Core needs to access numbers in RAM in the following order

data 0 1 2 3 4 3 4 11

hit?
miss?

total cycles

cache miss ratio:

13

ISE 407 Lecture 2 14

Example 2

Cache (4 lines, 2 bytes per line)
Access time: 1 cycle

index valid tag D0 D1

00
01
10
11

RAM
Access time: 100 cycles

address data

000000 data(0)

000001 data(1)

000010 data(2)

000011 data(3)

000100 data(4)

000101 data(5)

000110 data(6)

000111 data(7)

001000 data(8)

001001 data(9)

001010 data(10)

001011 data(11)

Core needs to access numbers in RAM in following order

data 0 1 2 3 4 3 4 11

hit?
miss?

cycles took

cache miss ratio:

14

ISE 407 Lecture 2 15

Some Further Experiments

• The sizes of the various caches can be queried (getconf -a | grep CACHE

or with the CpuId package), but we can also derive them experimentally.

• On my laptop, the cache sizes are:

– Level 1: 212 64-bit integers
– Level 2: 215 64-bit integers
– Level 3: 220 64-bit integers

• The following data were generated by random accesses into arrays of
different sizes with the random access function from earlier.

• The plateaus correspond exactly to the sizes of the caches.

15

ISE 407 Lecture 2 16

Memory Layout

• For more complex data structures, it’s important to keep in mind the
layout in memory.

• In general languages vary in their default memory layout for multi-
dimensional vectors according to convention.

– Julia is a column-ordered language.
– C/C++ is row-ordered.
– Numpy in Python is is row-ordered (for general lists, the question

doesn’t make sense).

• This means that to loop over the elements of a multi-dimensional array
in Julia, the outer-most loop should increment the last index.

• The inner-most loop should increment the first index.

• In C/C++, the opposite in true for statically allocated memory.

• Dynamically allocated memory is laid out manually and so can be laid
out either way.

16

ISE 407 Lecture 2 17

Impact of Memory Layout

• Consider the time to initialize a matrix.

• In Julia, matrices are stored column-wise.

• To move through the matrix element-by-element as the elements are laid
out in memory, we iterate through the indices in order.

• We consider initializing column-wise and row-wise.

Source: https://lwn.net/Articles/250967

17

ISE 407 Lecture 2 18

Matrix Initialization in Julia

1 function init_col_ordered(x::Vector{T}) where T

2 inds = axes(x, 1)

3 out = similar(Array{T}, inds, inds)

4 for i ∈ inds

5 out[:, i] = x

6 end

7 return out

8 end

9
10 function init_row_ordered(x::Vector{T}) where T

11 inds = axes(x, 1)

12 out = similar(Array{T}, inds, inds)

13 for i ∈ inds

14 out[i, :] = x

15 end

16 return out

17 end

julia> x = zeros(10000);

julia> @time init_col_ordered(x);

1.808912 seconds (2 allocations: 762.940 MiB, 9.40% gc time)

julia> @time init_row_ordered(x);

8.323898 seconds (14.71 k allocations: 763.676 MiB, 0.14% gc time)

Column ordered initialization is roughly four times faster.

18

ISE 407 Lecture 2 19

Matrix Multiplication

• Now consider multiplying two matrices.

• A straightforward implementation in Julia would be

1 function matmult_naive!(C, A, B)

2 # No checking for proper types or dimension match

3 fill!(C, 0)

4 for i ∈ 1:size(A, 1), j ∈ 1:size(B, 2), k ∈ 1:size(A, 2)

5 C[i, j] += A[i, k] * B[k, j]

6 end

7 return(C)

8 end

julia> A = rand(1:10, 2^11, 2^11);

julia> B = rand(1:10, 2^11, 2^11);

julia> C = similar(A);

julia> @btime matmult_naive!($C, $A, $B);

102.603 s (0 allocations: 0 bytes)

• Slow... because it is most natural to access one matrix row-wise and the
other matrix column-wise, but this is bad.

19

ISE 407 Lecture 2 20

The Improved Code

• What if we transpose one of the matrices first?

1 function matmult_trans!(C, A, B)

2 fill!(C, 0)

3 T = similar(A)

4 @inbounds for i ∈ axes(A, 1), j ∈ axes(A, 2)

5 T[i, j] = A[j, i]

6 end

7 @inbounds @fastmath for i ∈ axes(A, 1), j ∈ axes(T, 1)

8 Cij = zero(eltype(C))

9 for k ∈ axes(A, 2)

10 Cij += T[k, i]*B[k, j]

11 end

12 C[i,j] = Cij

13 end

14 end

julia> @btime matmult_trans!($C, $A, $B)

5.544 s (2 allocations: 32.00 MiB)

• Although we’re spending time to allocate memory and transpose the
matrix first, it’s much faster!

20

ISE 407 Lecture 2 21

A Little More on Caching

• We may able to avoid transposing if we exploit how cache works.

• As we know, data is cached in lines that have a fixed length.

• Therefore, if we copy one element from an array into the cache, we will
also get the next few elements for free.

• To get maximum performance, we should use all the data in the cache
that we can before it gets evicted.

• In the matrix example, this means that we should do several inner
products at the same time.

21

ISE 407 Lecture 2 22

Cache-Aware Matrix Multiplication

1 function matmult_cache!(C, A, B)

2 #Assume square matrices here to keep it simple

3 fill!(C, 0)

4 S = Int(cachelinesize()/sizeof(eltype(A)))

5 N = size(A, 1) # Assume that N is a multiple of S

6 @inbounds @fastmath for r ∈ 1:S:N, c ∈ 1:S:N, k ∈ 1:S:N

7 for c2 ∈ c:c+S-1, k2 ∈ k:k+S-1,

8 Bkc = B[k2, c2]

9 for r2 ∈ r:r+S-1

10 C[r2, c2] += A[r2, k2]*Bkc

11 end

12 end

13 end

14 end

julia> @btime matmult_cache!($A, $B, $C);

13.586 s (0 allocations: 0 bytes)

• We first compute the number of elements that a cache line can hold.

• Surprisingly slower than matmult_trans! , probably due to loop overhead.

• Perhaps we can combine the two ideas....

22

ISE 407 Lecture 2 23

Cache-Aware Matrix Multiplication

1 function matmult_cache!(C, A, B)

2 #Assume square matrices here

3 fill!(C, 0)

4 T = similar(A)

5 @inbounds for i ∈ axes(A, 1), j ∈ axes(A, 2)

6 T[i, j] = A[j, i]

7 end

8 S = Int(cachelinesize()/sizeof(eltype(A)))

9 N = size(A, 1)

10 @inbounds @fastmath for r ∈ 1:S:N, c ∈ 1:S:N, k ∈ 1:S:N

11 for c2 ∈ c:c+S-1, r2 ∈ r:r+S-1,

12 Crc = 0

13 for k2 ∈ k:k+S-1

14 Crc += A[k2, r2]*B[k2, c2]

15 end

16 C[r2, c2] = Crc

17 end

18 end

19 end

julia> @btime matmult_cache!($A, $B, $C);

6.089 s (2 allocations: 32.00 MiB)

• An improvement, but no better than the naive transpose method.

• Are other memory tricks we can exploit? Yes!

23

ISE 407 Lecture 2 24

Vectorization

• To allow for computations on data that doesn’t fit in 64-bit registers,
CPUs now have instructions that operate on special “wide registers”.

• Typically, a wide register holds 4 64-bit numbers and are only utilized in
very specific circumstances.

• The most common is a loop with fixed length and no branches where
order doesn’t matter.

julia> a = @SVector Int32[1,2,3,4,5,6,7,8]

julia> code_native(+, (typeof(a), typeof(a)), debuginfo=:none)

.text

movq %rdi, %rax

vmovdqu (%rdx), %ymm0

vpaddd (%rsi), %ymm0, %ymm0

vmovdqu %ymm0, (%rdi)

vzeroupper

retq

nopw %cs:(%rax,%rax)

nopl (%rax)

• Note the vector instructions.

• The native code for the non-static vector is almost 500 lines!!

24

ISE 407 Lecture 2 25

Vectorization Example

1 function sum_nosimd(x::Vector)

2 n = zero(eltype(x))

3 for i in eachindex(x)

4 n += x[i]

5 end

6 return n

7 end

8 function sum_simd(x::Vector)

9 n = zero(eltype(x))

10 # By removing the bounds check, we allow automatic SIMD

11 @inbounds for i in eachindex(x)

12 n += x[i]

13 end

14 return n

15 end

julia> data = rand(UInt64, 4096) #Vector should fit in cache

julia> @btime sum_nosimd(data)

2.233 µs (1 allocation: 16 bytes)

julia> @btime sum_simd(data)

220.968 ns (1 allocation: 16 bytes)

25

ISE 407 Lecture 2 26

Vectorization and Floating Point

• Suppose we want to sum the elements in an array x of 8 elements.

• In a non-vectorized loop, the result would be

(((((((x[1]+x[2]) + x[3]) + x[4]) + x[5]) +x[6]) + x[7] + x[8])

• With vectorization, the sum would be done in a different order

((((x[1]+x[5]) + (x[2] + x[6])) + (x[4]+x[7])) + (x[5] +x[8]))

• This is fine if the addition operator can be assumed commutative, but
recall that floating point addition is not commutative!

• For this reason, loops involving float operations will not be auto-
vectorized in general.

26

ISE 407 Lecture 2 27

Auto-Vectorization

• If there was a way that we could indicate that the order of operations
within the loop doesn’t matter, then the compiler could auto-vectorize.

• There is a package called LoopVectorization that allows just that.

1 function matmult_avx!(C, A, B)

2 @avx for m ∈ axes(A,1), n ∈ axes(B,2)

3 Cmn = zero(eltype(C))

4 for k ∈ axes(A,2)

5 Cmn += A[m,k] * B[k,n]

6 end

7 C[m,n] = Cmn

8 end

9 end

julia> @btime matmult_avx!($C, $A, $B);

3.670 s (0 allocations: 0 bytes)

julia> @btime $A*$B;

4.726 s (8 allocations: 32.00 MiB)

• With one macro, we achieve 30x speed-up with no manual optimization!

27

ISE 407 Lecture 2 28

More Results

julia> A = rand(1:10, 2^10, 2^10);

julia> B = rand(1:10, 2^10, 2^10);

julia> C = rand(1:10, 2^10, 2^10);

julia> @btime matmult_naive!($C, $A, $B);

6.974 s (0 allocations: 0 bytes)

julia> @btime matmult_trans!($C, $A, $B);

572.207 ms (2 allocations: 8.00 MiB)

julia> @btime matmult_avx!($C, $A, $B);

381.784 ms (0 allocations: 0 bytes)

julia> @btime $A*$B;

571.936 ms (8 allocations: 8.00 MiB)

julia> A = rand(1:10, 2^8, 2^8)

julia> B = rand(1:10, 2^8, 2^8)

julia> C = rand(1:10, 2^8, 2^8)

julia> @btime matmult_naive!($C, $A, $B);

25.747 ms (0 allocations: 0 bytes)

julia> @btime matmult_trans!($C, $A, $B);

4.686 ms (2 allocations: 512.08 KiB)

julia> @btime matmult_avx!($C, $A, $B);

3.133 ms (0 allocations: 0 bytes)

julia> @btime $A*$B

6.940 ms (8 allocations: 512.41 KiB)

• Working with matrices of size 210 is (relatively) faster, due to the Level
2 cache size.

• Note in the results that the native multiplication seems to be using the
same trick of taking the transpose, but vectorization is still faster.

28

ISE 407 Lecture 2 29

Different Integer Types

• For smaller integer types, the results look a bit different.

• matmult_cache! now dominates matmult_trans! , probably due to the

larger number of elements per cache line.

julia> B = rand(UInt8(0):UInt8(1), 2^6, 2^6);

julia> A = rand(UInt8(0):UInt8(1), 2^6, 2^6);

julia> C = similar(A);

julia> @btime matmult_trans!($C, $B, $A)

141.100 µs (1 allocation: 4.19 KiB)

julia> @btime matmult_cache!($C, $B, $A)

73.400 µs (1 allocation: 4.19 KiB)

julia> @btime matmult_avx!($C, $B, $A)

6.940 µs (0 allocations: 0 bytes)

29

ISE 407 Lecture 2 30

Other Issues Related to Cache: Memory Alignment

• Because data is always moved in chunks to the cache, you can think of
the memory as being divided into chunks the size of a cache line.

• Avoiding data structures that result in object representations straddling
a cache-line boundary is another way to improve performance.

• The data structure must fit in cache, otherwise cache misses dominate.

1 function alignment_test(data::Vector{UInt}, offset::Integer)

2 n = rand(UInt) # Jump randomly around the memory.

3 mask = (length(data) - 9) Y 7

4 GC.@preserve data begin # protect the array from moving in memory

5 ptr = pointer(data)

6 iszero(UInt(ptr) & 63) || error("Array not aligned")

7 ptr += (offset & 63)

8 for i in 1:4096

9 n = (n >>> 7) Y unsafe_load(ptr, (n & mask + 1) % Int)

10 end

11 end

12 return n

13 end

14 data = rand(UInt, 256 + 8) # Vector must fit in cache in order to see effect

julia> @btime alignment_test(data, 0)

18.300 µs (0 allocations: 0 bytes)

julia> @btime alignment_test(data, 60)

36.300 µs (0 allocations: 0 bytes)

30

ISE 407 Lecture 2 31

Memory Alignment for Structs

• Alignment issues don’t usually arise in practice because compilers usually
take care of them automatically.

• For examples, if we create a 7-byte data structure and query, it’s layout,
in Julia, is reported to take up 8 bytes.

• Because this padding wastes memory (and for other reasons), it is often
better to use a “struct of arrays” and than an “array of structs.”

1 struct AlignmentTest

2 a::UInt32 # 4 bytes +

3 b::UInt16 # 2 bytes +

4 c::UInt8 # 1 byte = 7 bytes?

5 end

6

7 struct AlignmentTestVector

8 a::Vector{UInt32}

9 b::Vector{UInt16}

10 c::Vector{UInt8}

11 end

31

ISE 407 Lecture 2 32

Memory Alignment for Structs

Julia allows you to query the memory layout in order to probe these kinds
of issues.

1 function get_mem_layout(T)

2 for fieldno in 1:fieldcount(T)

3 println("Name: ", fieldname(T, fieldno), "\t",

4 "Size: ", sizeof(fieldtype(T, fieldno)), " bytes\t",

5 "Offset: ", fieldoffset(T, fieldno), " bytes.")

6 end

7 end

julia> sizeof(AlignmentTest)

Size of AlignmentTest: 8 bytes.

julia> get_mem_layout(AlignmentTest)

Name: a Size: 4 bytes Offset: 0 bytes.

Name: b Size: 2 bytes Offset: 4 bytes.

Name: c Size: 1 bytes Offset: 6 bytes.

32

ISE 407 Lecture 2 33

Arrays of Structs

• Another reason why a struct of arrays is better than an array of structs
is that a struct of arrays allows for vectorization.

• This is illustrated in the following experiment.

julia> Base.rand(::Type{AlignmentTest}) = AlignmentTest(rand(UInt32), rand(UInt16), rand(UInt8))

julia> N = 1_000_000

julia> array_of_structs = [rand(AlignmentTest) for i in 1:N];

julia> struct_of_arrays = AlignmentTestVector(rand(UInt32, N), rand(UInt16, N), rand(UInt8, N));

julia> @btime sum(x -> x.a, array_of_structs)

485.000 µs (1 allocation: 16 bytes)

julia> @btime sum(struct_of_arrays.a);

93.800 µs (1 allocation: 16 bytes)

33

ISE 407 Lecture 2 34

Memory Allocation

• We have so far avoided the issue of how memory is actually
allocated/reserved and how it is deallocated/released again.

• In low-level languages like C, this is done by explicit commands.

• The C command malloc() simply asks for a raw block of memory to be
allocated and the corresponding command free() deallocates it.

• In high-level languages (Julia, Python, Matlab), the memory allocation
is hidden, but it’s still important to be aware that it has a cost.

• These languages also have an automated system for memory deallocation,
often called garbage collection.

• Internal pointers are kept for all memory blocks and when the user code
no longer has access, the memory is deallocated.

myarray = [1, 2, 3, 4]

myarray = nothing

• After the pointer is changed, the memory is deallocated automatically.

• When the same happens in C, it results in a memory leak.

34

ISE 407 Lecture 2 35

Cost of Memory Allocation

1 function increment(x::Vector{<:Integer})

2 y = similar(x)

3 @inbounds for i in eachindex(x)

4 y[i] = x[i] + 1

5 end

6 return y

7 end

8

9 function increment!(x::Vector{<:Integer})

10 @inbounds for i in eachindex(x)

11 x[i] = x[i] + 1

12 end

13 return x

14 end

julia> data = rand(UInt, 2^10);

julia> @btime increment(data);

942.222 ns (1 allocation: 8.13 KiB)

julia> @btime increment!(data);

77.463 ns (0 allocations: 0 bytes)

35

ISE 407 Lecture 2 36

Stack Versus Heap

• The program has access to two different blocks of RAM.

– The stack is scratch space (generally of a fixed size) pre-allocated
at the beginning of execution and can be accessed only in a FIFO
manner.

– The heap is memory memory available for dynamic allocation during
execution.

• The stack is used to store function parameters, return addresses, local
variables.

• Any data whose size is not too big and is known at compile time and
whose value won’t change can be stored on the stack.

• Stack memory is much cheaper to maintain, since there is only one
pointer (the stack pointer), whose value changes by one unit at a time.

• On the heap, each block must be allocated/deallocated and has a
separate pointer.

• Accessing memory inside the block requires pointer arithmetic.

• All in all, heap memory is relatively much more expensive.

36

ISE 407 Lecture 2 37

Assembly for Heap Allocation

1 abstract type AllocatedInteger end

2

3 mutable struct HeapAllocated <: AllocatedInteger

4 x::Int

5 end

julia> @code_native debuginfo=:none HeapAllocated(1)

.text

pushq %rbx

movq %rsi, %rbx

movq %fs:0, %rdi

addq $-15712, %rdi # imm = 0xC2A0

movabsq $jl_gc_pool_alloc, %rax

movl $1400, %esi # imm = 0x578

movl $16, %edx

callq *%rax

movabsq $140128568651936, %rcx # imm = 0x7F72398EB0A0

movq %rcx, -8(%rax)

movq %rbx, (%rax)

popq %rbx

retq

nopl (%rax)

37

ISE 407 Lecture 2 38

Assembly for Stack Allocation

1 struct StackAllocated <: AllocatedInteger

2 x::Int

3 end

4

5 Base.:+(x::Int, y::AllocatedInteger) = x + y.x

6 Base.:+(x::AllocatedInteger, y::AllocatedInteger) = x.x + y.x

julia> @code_native debuginfo=:none StackAllocated(1)

.text

movq %rsi, %rax

retq

nopw %cs:(%rax,%rax)

nop

julia> @btime sum(data_stack)

363.900 µs (1 allocation: 16 bytes)

julia> @btime sum(data_heap);

2.320 ms (1 allocation: 16 bytes)

38

