
Computational Optimization
ISE 407

Lecture 17

Dr. Ted Ralphs

ISE 407 Lecture 17 1

References for Today’s Lecture

• Sections 17.2–17.5, R. Sedgewick, Algorithms in C++, Part 5.

• AMO Sections 2.3

• CLRS Section 22.1

1

ISE 407 Lecture 17 2

Connectivity Relations

• So far, we have only considered sets of items that are related to each
other through some kind of ordering (if at all).

• In other words, two items x and y are only related by their relative
positions in the ordered list.

• We will now generalize this idea by considering additional connectivity
relationships between items.

• To do so, we will specify that there is a direct link between certain pairs
of items.

• This will allow us to ask questions such as the following.

– Is x connected “directly” to y?
– Is x connected to y “indirectly,” i.e., through a sequence of direct

connections?
– What is the set of of all items connected to x, directly or indirectly?
– What is the shortest number of connections needed to get from x to

y?

2

ISE 407 Lecture 17 3

Graphs

• A graph is an abstract object used to model such connectivity relations.

• A graph consists of a list of items, along with a set of connections
between the items.

• The study of such graphs and their properties, called graph theory, is
hundreds of years old.

• Graphs can be visualized easily by creating a physical manifestation.

• There are several variations on this theme.

– The connections in the graph may or may not have an orientation or
a direction.

– We may not allow more than one connection between a pair of items.
– We may not allow an item to be connected to itself.

3

ISE 407 Lecture 17 4

Applications of Graphs

• Maps

• Social Networks

• World Wide Web

• Circuits

• Scheduling

• Communication Networks

• Matching and Assignment

4

ISE 407 Lecture 17 5

Example Graph (Social Network)

5

ISE 407 Lecture 17 6

A Facebook Graph

6

ISE 407 Lecture 17 7

Example of an Abstract Graph

7

ISE 407 Lecture 17 8

Undirected Graphs: Terminology and Notation

• In an undirected graph, the “items” are usually called vertices (sometimes
also called nodes).

• The set of vertices is denoted V and the vertices are indexed from 0 to
n− 1, where n = |V |.

• The connections between the vertices are unordered pairs called edges.

• The set of edges is denoted E and m = |E| ≤ n(n− 1)/2.

• An undirected graph G = (V,E) is then composed of a set of vertices V
and a set of edges E ⊆ V × V .

• If e = {i, j} ∈ E, then

– i and j are called the endpoints of e,
– e is said to be incident to i and j, and
– i and j are said to be adjacent vertices and are also called neighbors.

8

ISE 407 Lecture 17 9

Directed Graphs: Terminology and Notation

• In a directed graph, the “items” are traditionaally called nodes.

• The set of nodes is denoted N and are indexed from 0 to n− 1, where
n = |N |.

• The connections between the nodes are ordered pairs called arcs.

• The set of arcs is denoted A and m = |A| ≤ n(n− 1).

• A directed graph G = (N,A) is then composed of a set of nodes N and
a set of arcs A ⊆ N ×N .

• If a = {i, j} ∈ A, then

– i is the tail of a and j is the head.
– a is said to be incident from i and to j,
– i and j are said to be adjacent nodes, and
– j is an out-neighbor or i and i is an in-neightbor of j.

9

ISE 407 Lecture 17 10

More Terminology

• Let G = (V,E) be an undirected graph.

• A subgraph of G is a graph composed of an edge set E′ ⊆ E along with
all incident vertices.

• A subset V ′ of V , along with all incident edges is called an induced
subgraph.

• A path in G is a sequence of vertices such that each vertex is adjacent
to the vertex preceding it in the sequence.

• A path is simple if no vertex occurs more than once in the sequence.

• A cycle is a path that is simple except that the first and last vertices are
the same.

• A tour is a cycle that includes all the vertices.

• Similar concepts exist for directed graphs.

10

ISE 407 Lecture 17 11

Network Representation

• Our goal is to develop “efficient” algorithms → reasonable computation
time.

• The main factors affecting efficiency are

– The underlying algorithm
– Data structure for storing the network

• The same algorithm may behave much differently with different graph
data structure.

• What information do we need to store?

– network topology (structure of nodes and arcs)
– associated data (costs, capacities, supplies/demands)

• What are the important operations we might need to perform with a
network data structure?

11

ISE 407 Lecture 17 12

Data Structures

• We first consider the general case of a directed graph.

• Common data structures

– Node-Arc Incidence Matrix
– Node-Node Adjacency Matrix
– Adjacency List
– Forward Star (Reverse Star)

12

ISE 407 Lecture 17 13

(Node-Arc) Incidence Matrix

• n×m matrix denoted N .

• One row for each node and one column for each arc.

• For each arc (i, j), put +1 in row i and -1 in row j.

(1, 2) (1, 3) (2, 3) (2, 4) (3, 2) (3, 4) (3, 5) (4, 5)
1
2
3
4
5

13

ISE 407 Lecture 17 14

(Node-Arc) Incidence Matrix

• What is the size of the matrix?

• How many entries are non-zero?

• What information do we get by reading across a row?

• Is this a space efficient representation?

• How about other operations?

14

ISE 407 Lecture 17 15

(Node-Node) Adjacency Matrix

• n× n matrix denoted H

• one row for each node and one column for each node

• entry hij = 1 if arc (i, j) ∈ A (0 otherwise)

1 2 3 4 5
1
2
3
4
5

15

ISE 407 Lecture 17 16

(Node-Node) Adjacency Matrix

• What is the size of the matrix?

• How many entries are non-zero?

• What data structures might we use to store arc costs and capacities?

• Is this a space efficient representation?

• What operations are most efficient with this data structure?

16

ISE 407 Lecture 17 17

Adjacency List

• The adjacency list of node i, A(i), is a list of the nodes j for which
(i, j) ∈ A

• Textbook approach is to store A(i) as a linked list, which allows efficient
addition and deletion, in principle.

• This results in one linked list of length |A(i)| for each node.

• The overall graph is stored as an array of these linked lists.

• The node data structure of the linked list can be used store additional
fields, such as arc cost and capacity.

• Is this a space efficient representation?

• What operations are most efficient with this data structure?

17

ISE 407 Lecture 17 18

Aside: Adjacency List Implementations

• There are many, different subtle variants on the textbook method
described on the previous slide.

• Which one is the most appropriate depends on how the data structure
will be used.

– Is the set of nodes fixed or might nodes come and go?
– Are the nodes identified by keys that we want to be able to look up?
– Is the set of arcs fixed or might arcs come and go?
– What auxiliary data must be stored?

• In many cases, storing the list of nodes or the list of edges as dictionaries
makes sense.

• In others, it may be better to use a list data structure (dynamic arrays).

• It may or may not make sense to have a separate data structure for
storing auxiliary data (recall “struct of arrays” versus array of structs”)

18

ISE 407 Lecture 17 19

Forward Star

• Stores node adjacency list of each node in one large array

• Associates a unique sequence number with each arc using a specific order
starting with arcs outgoing from node 1, then node 2, etc.

• Stores tail information about each arc in tail array, head information in
head array, etc.

• Maintains a pointer for each node that indicates the smallest numbered
arc in the arc list for that node.

• What are the advantages of this representation?

19

ISE 407 Lecture 17 20

Reverse Star

• Similar to a forward start except that arcs are sequenced starting with
arcs incoming from node 1.

• The two representations can be maintained side-by-side if necessary.

20

ISE 407 Lecture 17 21

Miscellaneous Issues

• Parallel Arcs

– Why would we need parallel arcs?
– Which representation(s) could accommodate them?

• Undirected Network

– What needs to change?
∗ Node-Arc Incidence Matrix
∗ Node-Node Adjacency Matrix
∗ Adjacency List

21

ISE 407 Lecture 17 22

Summary of Representations

Representation Storage Space Features
Incidence Matrix nm 1. Space inefficient

2. Expensive to manipulate
3. MCFP constraint matrix

Adjacency Matrix kn2 1. Suited to dense networks
2. Easy to implement

Adjacency List k1n+ k2m 1. Space efficient
2. Efficient to manipulate
3. Suited to dense and sparse

Forward Star k3n+ k4m 1. Space efficient
2. Efficient to manipulate
3. Suited to dense and spare

Table 1: From Ahuja et al. Figure 2.25

22

ISE 407 Lecture 17 23

Basic Graph Interface in Python

class Graph:

def __init__:

self.nodes = {}

self.edges = {}

def add_node(v)

def add_edge(v, w)

def get_node_list()

23

ISE 407 Lecture 17 24

Node Class

class Node:

def __init__(self, name):

self.name = i

self.neighbors = {}

def get_neighbors(self):

return self.neighbors

24

ISE 407 Lecture 17 25

A Client Function for Printing a Graph

• Here’s an example of a standard way in which the graph interface class
is used.

• Here, we print out a graph by enumerating all the edges incident to each
vertex.

def print(G):

for n in G.get_node_list():

print n, ":",

for i in n.get_neighbors():

print i

print

25

ISE 407 Lecture 17 26

Trees

• A tree is a set of items organized into a hierarchical structure (think of
a family tree).

• We can think of this as a special case of a graph, and so we call the
items nodes.

• Each node has a single designated parent and one or more children.

• There is a single designated node, called the root, with no parent.

• Any node with no children is called a leaf.

• Any node with children is called internal.

• A tree in which all nodes have 2 or fewer children is called a binary tree.

• Storing a list of items in a tree structure allows us to represent additional
relationships among the items in the list.

• Trees occur naturally in a wide variety of applications.

26

ISE 407 Lecture 17 27

Trees in Action

• File system

• Philogenic Trees

• Family Trees

• Call Trees

• Web page

27

ISE 407 Lecture 17 28

Additional Terminology

• The level of a node in the tree is the number of recursive calls to
parent() needed to reach the root.

• The depth of the tree is the maximum level of any of its nodes.

• A balanced tree is one in which all leaves are at levels k or k − 1, where
k is the depth of the tree.

• Additional terms

– Edge
– Path
– Siblings
– Subtree

28

ISE 407 Lecture 17 29

Tree Data Structures

• The tree ADT can be thought of as a list ADT with additional structure.

• One of the most important roles of the additional structure is to allow
for the list to be traversed easily in various orders.

• We may also want to be able to be able to query the relationships of a
given node to others (parent/sibling/child).

29

ISE 407 Lecture 17 30

Tree ADT

class Tree:

def __init__(self, root):

self.root = root

def add_node(self, key, data, parent)

def get_children(self, key) # return list of children

def get_parent(self, key)

def traverse(self, order) # print nodes in order

def __contains__(self, key)

def __iter__(self) # iterate over nodes in order

30

ISE 407 Lecture 17 31

Additional Functionality

• Later, we’ll want to be able to “splice” nodes into the tree at particular
places.

• We’ll also want to be able to do certain “rotations” in which we change
the parent/child relationships in a systematic way.

• The goal of these operations will be to maintain a certain structure in
the tree.

• This will make certain kinds of additions, deletions, and traversals efficient
so we can implement additional operations.

31

ISE 407 Lecture 17 32

Iterating Over the Nodes in a Tree

• Iterating over the nodes of a tree consists of visiting the nodes in a
specified order, starting at the root node.

• The methods we consider here can be implemented using the standard
API, i.e., we “discover” the nodes one by one as neighbors of previously
discovered node.

• As we encounter each node, we put all of its children on the list to be
visited.

• The order in which we take nodes off this list determined the search
order.

– Depth-first: Last in, first out. This means that we visit the node in
the list at the deepest level first.

– Breadth-first: First in, first out. This means we visit the node in the
list at the shallowest level first.

32

ISE 407 Lecture 17 33

Iterating in Depth-First Order (Recursive)

Here is a recursive implementation of a depth-first search.

def dfs_r(self, root):

for i in self.get_children(root):

print i

self.dfs_r(i)

def dfs(self)

print self.root

self.dfs_r(root)

33

ISE 407 Lecture 17 34

Iterating in Depth-First Order (Recursive)

We can also do depth-first search with a stack

def dfs(self):

s = Stack()

s.push(self.root)

while s.isEmpty() != True:

current = s.pop()

print current

for i in self.get_children(current):

s.push(i)

34

ISE 407 Lecture 17 35

Iterating in Breadth-First Order

To get breadth first search, we can simply replace the stack with a queue:

def dfs(self):

s = Queue()

s.enqueue(self.root)

while s.isEmpty() != True:

current = s.dequeue()

print current

for i in self.get_children(current):

s.enqueue(i)

35

ISE 407 Lecture 17 36

Binary Trees

• In many applications, the trees that arise are binary by nature.

• The call tree in quicksort or mergesort is an example.

• When we know that there will be at most two children of a given node,
we call them the right and left children.

• We can specialize the ADT by adding methods to access the right and
left children directly.

– get parent(index): return the parent of node index.
– get right(index): return the “right” child of node index.
– get left(index): return the “left” child of node index.

36

ISE 407 Lecture 17 37

Binary Tree ADT

class BinaryTree(Tree):

def get_left(self, index):

get_children(index)[0]

def get_right(self, index):

get_children(index)[1]

37

ISE 407 Lecture 17 38

Iterating Over the Nodes of a Binary Tree (Pre-order)

When doing a depth first search, if we print each node before searching
either of the children recursively, this produces an “pre-order” traversal.

def depth(self, root):

print root

self.depth(self.get_left(root))

self.depth(self.get_right(root))

38

ISE 407 Lecture 17 39

Iterating Over the Nodes of a Binary Tree (In-order)

Alternatively, if we print each node in between searching the left and right
subtrees, this produces an “in-order” traversal.

def depth(self, root):

self.depth(self.get_left(root))

print root

self.depth(self.get_right(root))

39

ISE 407 Lecture 17 40

Iterating Over the Nodes of a Binary Tree (Post-order)

Finally, if we print each node after searching both the left and right subtrees,
this produces a “post-order” traversal.

def depth(self, root):

self.depth(self.get_left(root))

self.depth(self.get_right(root))

print root

40

ISE 407 Lecture 17 41

Running Time of Iterating Nodes

• What is the running time of these methods of iterating over the nodes?

41

