Computational Optimization
ISE 407

Lecture 15

Dr. Ted Ralphs

ISE 407 Lecture 15

Reading for This Lecture

e Horowitz and Sahni, Chapter 2

e Aho, Hopcroft, and Ullman, Chapter 2

ISE 407 Lecture 15 2

What is a Data Structure?

e We will define data structures to be schemes for organizing and storing
sets, though this is a slightly limiting definition.

e Examples of set operations.

— add
— delete
— find
— union
— sort

e We also want to be able to efficiently enumerate the items in a set.

ISE 407 Lecture 15

Choosing the Right Data Structure

e Data structures consist of

— a scheme for storing the set(s), and
— algorithms for performing the desired operations

e Hence, each set operation has an associated complexity
e To choose a data structure, you should know

— something about the elements of the set, and
— what operations you will want to perform on the set.

ISE 407 Lecture 15 4

Data Structures and Algorithms

e Typically, data structures are part of a larger algorithm.

e In order to choose a data structure, you should also know something
about the algorithm.

e The data structure should be efficient for the operations that will be
performed most often.

e The same algorithm can have different running times using different data
structures.

e Alternatively, the same data structures can perform differently in different
algorithms.

ISE 407 Lecture 15 5

Data Structures and Data Types

e A data structure is an abstraction typically specified independent of any
particular programming environment.

— We analyze data structures in the context of a particular model of
computation, just as we do algorithms.

— The term is typically used to indicate a complete scheme, including
implementation details.

e A data type is the analogue of a data structure in the context of a
particular computing system.

e However, in object-oriented languages, a data type is typically defined
independent of the implementation.

ISE 407 Lecture 15 6

Object Oriented Programming

e Object-oriented programming is a paradigm that empasizes

— Data rather than methods
— Code reuse
— Separation of interface from implementation

e Defining new data types is the mechanism by which object-oriented
languages incorporate data structures into the language.

e Defining a new data type requires both

— an Application Program Interface (API): the set of data values that
are to be stored and a set of supported operations on those values and

— one or more mplementation of the API: programmatically enabling the
capabilities laid out in the API.

e (lasses and Inheritance allow us to separate the interface from the
implementation.

e |t also allows us to define hierarchies of data types.

e This is useful in allowing concrete types to be interchangeable in well-
defined ways, even when not entirely compatible.

ISE 407 Lecture 15 7

Classes

e Classes are the mechanisms by which new data types can be defined.
e A class is composed of

— Data are the values to be stored (data members in C+4++; data
attributes in Python).

— Functions are the operations to be performed on the data (methods
in C4++; method attributes in Python).

e There are also constructors and destructors by which objects of the new
type can be created and destroyed.

e |deally, the definition of the class is independent from the implementation.

— The definition (API) specifies what the data values are and what
operations we would like to perform on them.

— The API informs the user of the class how to use it within another
program.

— The implementation specifies the algorithms used to perform those
operations and is hidden from the user.

e Julia's structs are a simplified version of classes.

ISE 407 Lecture 15 8

Inheritance

e Inheritance is a mechanism by which we can either

— Define a grouping of data types with a common (sub-)API (a data
type might belong to more than one grouping).

— Define an API for which it is expected there will be multiple alternative
implementations.

e A base class is a class defined for the above purposes that may be
incomplete.

— Classes derived from the base class inherit its structure and may
complete/extend it.

— A base class is abstract/virtual if the implementation of the API is
missing or incomplete.

e In C++, functions in a base class may be virtual, which means they can
be re-implemented in a derived class.

e In Python, any method can be re-implemented.

e Julia has a similar notion of type hierarchies, but it is implemented using
multiple dispatch and structs.

ISE 407 Lecture 15 9

Classes in C++

e In C+1, the definition is contained in a header file that must be included
in any source file that uses the data type.

e Members can be either public or private.

— The interface consists of the public members of the class.
— The private members of the class along with the function
implementations are the implementation.

e |t is good programming style to keep all data members private.

e Data members define how the data is stored, which is implementation-
dependent

e Access to data values can be provided through query methods.
e This allows changing the implementation without affecting clients.

e Defining operators, such as + and [] within the classes can allow new
data types to work with in-built operators.

ISE 407 Lecture 15 10

Classes in Python

e In Python, the class mechanism is much simpler.

e Methods implemented in a single file are part of an implicitly defined
module that is like a class with no data.

e Modules can also be grouped together into packages.
e Thereis a proper class mechanism, but all attributes of a class are public.

e |f necessary, attributes that are meant to be “private” can be given

names that are affixed with an “_".

e It is possible for the interface to be separated from the implementation,
but this is not usually done in Python.

e There are also initializers and other “magic methods” that allow new
data types to behave as expected with in-built operators.

ISE 407 Lecture 15 11

Multiple Dispatch in Julia

e Julia does not have classes in the same sense that C+-+ and Python do,
e Rather, Julia only has structs (like those in C).

e The methods that operate on those structs are independent and simply
take the struct as an argument.

e This is actually almost identical to Python in which class methods are
simply functions that take a class object as the first argument.

e The difference is only in the high-level syntax.

e In Julia, standard operations can be extended to work with new data
types using multiple dispatch.

ISE 407 Lecture 15 12

Abstract Base Classes

e In Python and in the STL of C4++, we group the data types according
to the APls they support by defining abstract base classes.

e In C++, an abstract base class is a base class with pure virtual functions.

— Virtual functions may or may not be implemented in the base class.

— A pure virtual function is one that has no definition and thus prevents
the class from being instantiated.

— In order to be used, a derived class must define all of the functions
from the base class that are pure virtual.

e Python has a concept called virtual base class, but the philosophy and
usage are different than in C4++.

e Julia's type system also has abstract types, but there is no mechanism
for defining an interface independent of implementation.

ISE 407 Lecture 15 13

Built-in Data Tyes

e Python has a number of very useful data types built into the language,
but it is easy to obtain new ones by installing packages.

o In C++, the Standard Template Library or STL is a library of commonly
used data types and algorithms.

e Technically, the STL is not part of the language.
e Both Python built-in data structures and the STL are highly optimized.

e Julia has a collection of built-ins that is a bit broader than C/C++, but
in Julia, it is also easy to etend the language with packages.

ISE 407 Lecture 15

14

Python’s Collections ABCs

ABC Inherits from Abstract Methods Mixin Methods
Container _ containa_
Hashable __hash
Iterable __iter
Iterator Iterable next __iter
Sized _len
Callable _call
Sequence Sized, Iterable, __getitem , len __containa__, iter , reversed , index, and count
Container
R SELELIE __getitem | Inherited sequence methods and append, reverse, extend,
__getitem , pop, remove, ANd _ iadd
_ delitem , _len
insert
SEL 5ized, Iterable, __contains , iter ,|_1e . 1t , eq , mne , gt . ge , a&and
Container —len__ _or_ , sub | xor and isdisjcint
SLIEIEiEL SEL __containa_, iter , |Inherited set methods and clear, pop, remove, ior |
_len , add, discard __dend , iwmor and __disub
Mapping 5ized, Iterable, __getitem , iter __contains |, keya, itema, walues, get, eq and _ne
Container _len
MutableMapping Mapping __getitem Inhented Mapping Methods and pop, popitem, clear,
__3etitem update, and setdefault
_delitem , iter ,
_len
MappingView Sized _len
— Il MappingView, Set _ contain3 , _ iter
Sesie Mapping\iew, Set __containa__, iter
Values\View MappingView ETmErCTE R ET

Figure 1: Source: http://docs.python.org/2/library/collections.html

ISE 407 Lecture 15

15

Python’s Built-in Types and Other ABCs

Numeric

— Real: float, long, complex
— Integral: int

Sequence

— String: str, unicode
— Immutable: tuple, xrange
— Mutable: 1ist, bytearray

Set: set, frozenset
Map: dict

File

Memoryview

Context Manager

ISE 407 Lecture 15 16

Delving into Lists

e The “list" data type is fundamental in all programming languages.

e As opposed to the array data type in C, which has a fixed length, the list
data type is meant to support dynamic re-sizing.

e Such a data structure might also be called a “dynamic array.”

— Python provides a built-in list data type with a full-featured API.

— C++ provides something similar in the vector class of the standard
template library (STL)

— Julia provides the Array, which can function either as a C-style array
or a Python-style list in different circumstances.

e How is the list data type implemented?
e How efficient is it in each language?

e \What can it be used for?

ISE 407 Lecture 15 17

Example: List Data Type

e Suppose we wanted to design a new data type for storing a list of
“objects” similar to the Python list data type.

e What operations might we want to perform?

— Create a list.

— Get/set the value of element j.

— Delete element j from the list.

— Add/remove something to the list just before element j.
— Add/remove an item from the bginning/end of the list.
— Loop through the elements in sequence.

— Concatenate two lists.

— Make a copy of a list.

— Find/remove an element in the list.

e This data type is usually implemented in one of two different ways:

— using an array, or
— using a linked list.

ISE 407 Lecture 15

18

A List Class in Python

class List:
creating the array
def __init__(self)
adding items
def insert(self, pos, item)
def append(self, item)
def extend(self, list)

deleting items
def remove(self, item)
def pop(self, pos)

list queries

def __contains__(self, item)
def index(self, item)

def peek(self, pos)

def __len__(self)

def __getitem__(self, index)

ISE 407 Lecture 15

A List Class in C++

class list {
private:
// Here is the implementation-dependent code
// that defines exactly how the list is stored.
public:
// Here is the list of operations to be implemented.
// Create and destroy a list
list () ;
“1ist) ;
// Get the number of items in the list
int getNumItems() const;
// Get the value of item j
bool getItem(const int j, int& value) const;
// Change the value of item j
bool setItem(const int j, const int value);
// Add an item before item j
bool addItem(const int j, const int value);
// Delete item j
bool delItem(const int j);

In practice, getItem would be implemented by defining the []1 operator.

ISE 407 Lecture 15 20

Implementing with Arrays

e |In most programming languages, an array is a set of contiguous memory
locations in which values can be stored.

e Storing list items in an array allows us to easily find the %" item if we
know where the first item is.

e You cannot create an array in Python, but the Python list class is
implemented using the arrays provided in C.

ISE 407 Lecture 15 21

Some Details

e The specific requirements of the APl make subtle differences in how we
implement the class.

e An important requirement is that we be able to loop through the items
in order.

e This means that we can meaningfully refer to an item’s position in the
list.

e The list is not really “ordered,” the ordering is determined by how the
items are added to the list originally.

e Of course, a given implementation may support the sorting of the list.

ISE 407 Lecture 15 22

A Basic Implementation

e A basic implementation of a list class with arrays would require us to
store

— The underlying array (which may have more slots than necessary)
— The size of the array
— The number of elements in the list (could be less than the size)

e For now, we'll assume that the items on the list are stored in the first
available positions in the array.

e This storage scheme affects the efficiency of certain operations.

ISE 407 Lecture 15

Implementing with Arrays in C++

This source would be put in a file called 1ist.h.

class list {
private:
// Here is the implementation-dependent code.
// We'll store the data in this array.
int* array;
// Here is the size of the array.
int size;
// Here is the number of items in the list.
int numltems;
public:
list () ;
“list();
int getNumItems() const;
bool getItem(const int j, int& value) const;
bool setItem(const j, const int value);
bool addItem(const int j, const int value);
bool delItem(const int j);

ISE 407 Lecture 15 24

Making an Empty List

e To make an empty list, what do you have to do?

— Allocate an array of a specified size.
— How big?

e The best size for the allocated array depends on what will be done with
the list.

— How many items will be added to the list?
— How much will its size changeover time?
— Is there a fixed maximum size?

ISE 407 Lecture 15

25

Constructing and Destructing in C+4+

This source would be put in a file called 1ist. cpp.
#include "list.h"

list::1list()
array(new int[MAXSIZE]);
size (MAXSIZE) ;
numItems (0) ;

{}

list::"1list () {
delete array;
array = O;
size = 0;

ISE 407 Lecture 15 26

Python’s List Data Type

e With the Python built-in list data type, the details are hidden from the
user, but construction occurs upon executing the command

list = []

e Note that even Python itself can and does have different implementations.

e The Python language is also specified by an API of sorts, leaving room
for different implementations.

ISE 407 Lecture 15 27

Implementing List Query Operations

Returning the item in the %" position is easy with this implementation.
Determining whether an item is in the list is time-consuming in general.
Finding the position of a given item in the list is similarly difficult.
We don’t have much choice but to search through the list linearly.

This is the nature of an “unordered” list.

ISE 407 Lecture 15

28

Implementing List Query Operations in C4++

int list::getNumItems() const {
return numlItems;

}

const bool list::getItem(const int j, int& value) {
if (j > 0 && j < size){
value = arrayljl;
return true;
Yelseq{
return false;

ISE 407 Lecture 15 29

Implementing List Modification Operations

Appending to a list

— Generally easy—we just put the item in the last open slot.
— However, if the array is full, we have to allocate more memory.

Inserting in the middle of the list requires moving some list items aside
(and perhaps also allocating more memory).

Deleting the item with a specified index from a list also requires moving
some elements to close the gap.

Removing an item whose index is unknown requires first searching the
list and then removing the item once found.

ISE 407 Lecture 15

30

Implementing List Modification Operations

bool list::addItem(const int j, const int value){
if (numItems == size || j < 0 || j > size){
return false;
telseq{
for (int i = size; i > j; i—-)
arrayl[i] = arrayl[i-1];
array[j] = value;
numltems++;

bool list::delltem(const int j){
if (7 <0 || j > size - 1){
return false;
Yelsed
for (int i = j; i < size - 1; i++)
array[i] = array[i+1];
numltems——;

ISE 407 Lecture 15 31

Implementing with Linked Lists

e For a linked list implementation, we would replace the array with a linked
list.

e To the client, the class could function exactly as before, but with a
different implementation.

e With a linked list, the items to be stored in the list are stored within
separate objects called “nodes’.

e The nodes are linked to each other through a variable next that tracks
which node is next in the list.

e In addition, we must also keep track of which node is the first or “head
node”.

ISE 407 Lecture 15

Linked List Implementation: Node Class in Python

Here is the definition of a node class for a linked list.

class Node:

def __init__(self, initdata, nextNode = None):
self.data = initdata
self .nextNode = nextNode

def getData(self):
return self.data

def getNext(self):
return self.nextNode

def setData(self, newdata):
self.data = newdata

def setNext(self, newnext):
self .nextNode = newnext

ISE 407 Lecture 15

33

Linked List Implementation: List Class in Python

e In the list class, we need to store

— The head node.
— The number of items on the list.

class List:

def

def

__init__(self, Node = None, length = 0):

self .head = Node

self.length = length
append(self, item):

current = self.head
self.head = Node(item)

self .head.nextNode = current
self.length += 1

e Note that we append to the “beginning” of a linked list and the “end”
of an array.

e For this reason, it's only efficient to iterate through a singly linked list
backward.

ISE 407 Lecture 15

Linked List Implementation: Search

def __contains__(self, item):
current = self.head
while current != None:
if current.getData() == item:
return True
else:
current = current.getNext ()

return False

ISE 407 Lecture 15

35

Linked List Implementation: Removing

def remove(self, item):
current = self.head
previous = None
found = False
while not found and current != None:
if current.getData() == item:
found = True
else:
previous = current
current = current.getNext ()

if not found:
return False
elif previous == None:
self .head = current.getNext()
else:
previous.setNext (current.getNext ())
self.length -= 1
return True

ISE 407 Lecture 15

36

Linked List Implementation: Other Methods

e _len ()
e insert()
e peek()

e pop()

e extend()

e index()

ISE 407 Lecture 15 37

Comparing List Implementations

e Consider the two implementations we have just discussed.

e An array is a simple data type that allows us to store a sequence of
numbers.

o A linked list does the same thing.

e What is the difference?

ISE 407 Lecture 15 38

Comparing List Implementations: Efficiency

e To compare the two data types, we must analyze the running time of
each operation.

e This table compares the running times of the operations.

Array | Linked List

length()
insert ()

peek ()
pop ()
extend ()
index ()

append ()
remove ()

ISE 407 Lecture 15 39

Comparing List Implementations: Memory Usage

e How do these data types compare in terms of the amount of memory
required?

e |t depends...
e The nodes take twice as much memory as an entry in an array.

e However, we only need to have exactly the number of nodes that we
have list items with a linked list.

e With an array, we generally need to have more slots available than there
are items.

e In the end, the choice depends on what we expect to do with the list in
a particular application.

ISE 407 Lecture 15

40

e Doubly linked list

e Circular list

e Ordered linked list

Variations

ISE 407 Lecture 15

41

Insertion sort
Merge sort/quick sort
Binary search
Circular lists

Doubly linked lists

Using lists

ISE 407 Lecture 15 42

Stacks

e A stack is a special kind of list in which items can only be removed in
“last-in, first-out” (LIFO) order.

e The basic operations on a stack are

— push(): Put a new item on the stack.

— pop(): Take the most recently added item off the stack.
— peek(): Get a copy of the most recently added item.

— isEmpty(): Determine whether the stack is empty.

— remove (): Remove a particular item from the stack.

e Stack data structures

— Array
— Linked list

e In Python, the 1ist API includes the methods to support its use as a
stack.

ISE 407 Lecture 15 43

Queues

e A queueis a list in which items can only be removed in “first-in, first-out”
(FIFO) order.

e The basic operations on a queue are

— enqueue (): put a new item in the queue.

— dequeue (): remove the most recently added item from the queue.
— peek (): Get a copy of the most recently added item.

— isEmpty(): Determine whether the stack is empty.

— remove (): Remove a particular item from the stack.

e Queue data structures

— Array
— Circular array
— Linked list

