
Computational Optimization
ISE407

Lecture 13

Dr. Ted Ralphs

ISE 407 Lecture 13 1

Reading for This Lecture

• Roosta, Chapter 4, Sections 1 and 3, Chapter 5

• “Introduction to High Performance Computing for Scientists and
Engineers,” G. Hager and G. Wellein, Chapters 5–11.

• MPI Introduction and Specification

• OpenMP Introduction, Specification, and Tutorial

• https://juliafolds.github.io/data-parallelism/tutorials/quick-introduction/

• https://www.csd.uwo.ca/~mmorenom/cs2101a_moreno/Parallel_computing_with_

Julia.pdf

1

ISE 407 Lecture 13 2

Design Issues

• Platform/Architecture

• Task Decomposition

• Task Mapping/Scheduling

• Communication Protocol

2

ISE 407 Lecture 13 3

Parallelizing Sequential Algorithms

• The most obvious approach to developing a parallel algorithm is to
parallelize a sequential algorithm.

• The primary additional concept one must keep in mind is data access
patterns.

– In the case of shared memory architectures, one must be cognizant of
possible collisions in accessing the main memory.

– In the case of distributed memory architectures, one must be cognizant
of the need to move data to where it is needed.

• In either case, losses in efficiency result from either idle time or wasted
computation due to lack of availability of data locally.

3

ISE 407 Lecture 13 4

Task Decomposition

• Fine-grained parallelism

– Suited for massively parallel systems with many small processors and
fast communication links.

– These are the algorithms we’ve primarily talked about so far.

• Course-grained parallelism

– Suited to small numbers of more powerful processors.
– Data decomposition
∗ Recursion/Divide and Conquer
∗ Domain Decomposition

– Functional parallelism
∗ Data Dependency Analysis
∗ Pipelining

4

ISE 407 Lecture 13 5

Task Agglomeration

• Depending on the number of processors available, we may have to run
multiple tasks on a single processor.

• To do this effectively, we have to determine which tasks should be
combined to achieve maximum efficiency.

• This requires the same analysis of communication patterns and data
access done in task decomposition.

5

ISE 407 Lecture 13 6

Mapping

• Concurrency

– Data dependency analysis

• Locality

– Interconnection network
– Communication pattern

• Mapping is an optimization problem.

• These are very difficult to solve in general.

6

ISE 407 Lecture 13 7

Paradigms for Parallel Programming

• It is difficult to define what we mean by a “paradigm” for parallel
programming.

• There are numerous dimensions on which developing parallel algorithms
may differ on different platforms.

– Shared versus distributed memory
– Processes versus threads
– Asynchronous versus synchronous
– Explicit message-passing versus remote function calls

• We will discuss some of the commonly used tools and the associated
challenges.

• We’ll also see the abstractions used in Julia.

• This is only scratching the surface of this very broad and complex topic.

7

ISE 407 Lecture 13 8

Data Movement

• At the core of what changes when one goes from a sequential environment
to a parallel one is data movement and communication.

• Generally speaking, data movement and/or communication happens
either through a shared global memory or over a network.

– When computation is happening in different threads of the same
process, communication can happen through memory.

– When computation is happening in separate processes, perhaps on
different physical compute nodes, data must be moved over the
network.

• In the former case, one must take into account many additional details
to ensure that race conditions don’t arise.

• How these differed ways of moving data are reflected in the programming
environment differs widely by language.

• In Julia, many of the details are abstracted away.

• There are of course many ways to hybridize.

8

ISE 407 Lecture 13 9

Communication Protocols: Message Passing

• Used primarily in distributed-memory or “hybrid” environments.

• Data is passed through explicit send and receive function calls.

• There is no explicit synchronization.

• In general, this is the most flexible and portable protocol.

• MPI is the established standard.

• PVM is a similar older standard that is still used.

9

ISE 407 Lecture 13 10

Communication Protocols: Open MP/Threads

• Used in shared-memory environments.

• Parallelism through “threading”.

• Threads communicate through global memory.

• Can have explicit synchronization.

• OpenMP is a standard implemented by most compilers.

10

ISE 407 Lecture 13 11

MPI Basics

• MPI stands for Message Passing Interface.

• It is an API for point-to-point communication that hides the platform-
dependent details from the user.

• There many different implementations of MPI and the standard leaves
some details unspecified.

• The user launches the MPI processes in a distributed fashion and forms
one or more “communicators.”

• Data can be sent explicitly between processes using message-passing
calls.

• Allows for portability across different platforms.

11

ISE 407 Lecture 13 12

Building and Running

• There is only one single executable that is run everywhere.

• It must figure out what it’s job is by querying its rank.

• MPI programs are typically built with a compiler that is really a wrapper
around a standard compiler (called something mpicc).

• The program is launched with the mpirun command.

~> mpirun -np 8 -hostfile my_machines my_executable

12

ISE 407 Lecture 13 13

Messaging Concepts

• Buffer

• Source

• Destination

• Tag

• Communicator

13

ISE 407 Lecture 13 14

Types of Communication Calls

• Synchronous send

• Blocking send / blocking receive

• Non-blocking send / non-blocking receive

• Buffered send

• Combined send/receive

• “Ready” send

14

ISE 407 Lecture 13 15

Basic Functions in MPI

15

ISE 407 Lecture 13 16

Simple Example

int numtasks, rank, dest, source, rc, count, tag=1;

char inmsg, outmsg='x';
MPI_Status Stat;

MPI_Init(&argc,&argv);

MPI_Comm_size(MPI_COMM_WORLD, &numtasks);

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

if (rank == 0) {

dest = 1;

source = 1;

rc = MPI_Send(&outmsg, 1, MPI_CHAR, dest, tag, MPI_COMM_WORLD);

rc = MPI_Recv(&inmsg, 1, MPI_CHAR, source, tag, MPI_COMM_WORLD, &Stat);

}

else if (rank == 1) {

dest = 0;

source = 0;

rc = MPI_Recv(&inmsg, 1, MPI_CHAR, source, tag, MPI_COMM_WORLD, &Stat);

rc = MPI_Send(&outmsg, 1, MPI_CHAR, dest, tag, MPI_COMM_WORLD);

}

16

ISE 407 Lecture 13 17

Simple Example

#include <mpi.h>

int main(int argc, char** argv) {

// Initialize the MPI environment

MPI_Init(NULL, NULL);

// Get the number of processes

int size;

MPI_Comm_size(MPI_COMM_WORLD, &size);

// Get the rank of the process

int rank;

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

int i, sum(0), dest, rc, count, tag=1;

MPI_Status Stat;

int skip = 1000000000/size;

int beg = rank*skip;

int end = (rank+1)*skip;

17

ISE 407 Lecture 13 18

for (i = beg; i < end; i++){

sum += 1;

}

if (rank == 0){

int sum_other(0), total (0);

while (total < size-1){

rc = MPI_Recv(&sum_other, 1, MPI_INT, MPI_ANY_SOURCE, tag,

MPI_COMM_WORLD,

&Stat);

std::cout << "Message received from " << Stat.MPI_SOURCE << ": ";

std::cout << sum << std::endl;

sum += sum_other;

total++;

}

std::cout << "Total: " << sum << std::endl;

}else{

rc = MPI_Send(&sum, 1, MPI_INT, 0, tag, MPI_COMM_WORLD);

std::cout << "Message sent from " << rank << ": " << sum;

std::cout << std::endl;

}

MPI_Finalize();

}

18

ISE 407 Lecture 13 19

Collective Communication

• Synchronization: processes wait until all members of the group have
reached the synchronization point.

• Data Movement: broadcast, scatter/gather, all to all.

• Collective Computation (reductions): one member of the group collects
data from the other members and performs an operation (min, max, add,
multiply, etc.).

19

ISE 407 Lecture 13 20

Virtual Topologies

• Allows the user to specify the topology of the interconnection network.

• This may allow certain features to be implemented more efficiently.

20

ISE 407 Lecture 13 21

OpenMP/Threads

1

RvdP/V1 An Overview of OpenMP

NTU Talk
January 14

2009

An Overview of OpenMP

Ruud van der Pas

Senior Staff Engineer
Technical Developer Tools

Sun Microsystems, Menlo Park, CA, USA

Nanyang Technological University
Singapore

Wednesday January 14, 2009

21

ISE 407 Lecture 13 22

OpenMP Implementation

• OpenMP is implemented through compiler directives.

• User is responsible for indicating what code segments should be performed
in parallel.

• The user is also responsible for eliminating potential memory conflicts,
etc.

• The compiler is responsible for inserting platform-specific function calls,
etc.

22

ISE 407 Lecture 13 23

OpenMP Features

• Capabilities are dependent on the compiler.

– Primarily used on shared-memory architectures
– Can work in distributed-memory environments (TreadMarks)

• Explicit synchronization

• Locking functions

• Critical regions

• Private and shared variables

• Atomic operations

23

ISE 407 Lecture 13 24

Using OpenMP

• Compiler directives

– parallel
– parallel for
– parallel sections
– barrier
– private
– critical

• Shared library functions

– omp get num threads()

– omp set lock()

24

ISE 407 Lecture 13 25

OpenMP Example

int matvecmult(int **A, int *x, int * b, int m, int n){

#pragma omp parallel for default(none) private(i,j,sum) \

shared(m,n,A,x,b)

for (i=0; i<m; i++){

sum = 0.0;

for (j=0; j<n; j++){

sum += A[i][j]*x[j];

}

b[i] = sum;

}

}

25

ISE 407 Lecture 13 26

OpenMP Performance

Figure 1: Open MP Performance

26

ISE 407 Lecture 13 27

OpenMP Concepts and Issues

• Race Conditions (conflicts between processes in updating data)

• Deadlocks

• Critical regions

• Locking functions

• Atomic updates

27

ISE 407 Lecture 13 28

Atomic Update Example

The advantage of atomic over critical is that it allows us to update
different parts of an array in parallel.

void atomic_example(int *x, int *y, int *index, int n)

{

#pragma omp parallel for shared(x, y, index, n)

for (int i = 0; i < n; i++) {

#pragma omp atomic update

x[index[i]] += i;

y[i] += work2(i);

}

}

int main()

{

int x[1000], y[10000], index[10000], i;

for (i = 0; i < 10000; i++) {

index[i] = i % 1000;

y[i]=0

}

for (i = 0; i < 1000; i++)

x[i] = 0;

atomic_example(x, y, index, 10000);

return 0;

}

Source:

https://www.openmp.org/wp-content/uploads/OpenMP4.0.0.Examples.pdf

28

ISE 407 Lecture 13 29

Parallel Programming in Julia

• Several different paradigms are possible, but abstractions bind them
together.

– Aysnchronous programming
– Producer-consumer
– Multi-threading
– Distributed computation

• One can start Julia with multiple threads and/or multiple processes/

• The number of threads cannot be changed dynamically, but processes
can be added and removed.

~> julia -t 4

julia> Threads.nthreads()

4

~> julia -p 4

julia> workers()

4-element Array{Int64,1}:

2

3

4

5

29

ISE 407 Lecture 13 30

Asynchronous Programming (Tasks)

• One can create and schedule independent tasks with @task and @async

• Using @task creates a task, but does not run it.

• schedule is used to run the task.

• One can also explicitly wait for a task to finish.

• @async creates a task and immediately runs it.

julia> t = @task sum(rand(100))

Task (runnable) @0x00007f13a40c0eb0

julia> schedule(t);

julia> wait(t);

julia> fetch(t)

49.803227895281665

30

ISE 407 Lecture 13 31

Communicating with Channels
Channels allow tasks to communicate while running.

julia> function producer(c::Channel)

put!(c, "start")

for n=1:4

put!(c, 2n)

end

put!(c, "stop")

end;

julia> chnl = Channel(producer);

julia> take!(chnl)

"start"

julia> take!(chnl)

2

julia> take!(chnl)

4

julia> take!(chnl)

6

julia> take!(chnl)

8

julia> take!(chnl)

"stop"

31

ISE 407 Lecture 13 32

Multithreading

• The @threads macro can be used to parallelize loops.

• You are explicitly responsible for avoiding race conditions by using locks
and atomic variables.

using Base.Threads

function matmult_naive_parallel!(C, A, B)

@threads for i ∈ 1:size(A, 1)

for j ∈ 1:size(B, 2)

C[i, j] = A[i, :]'B[:, j]

end

end

return(C)

end

32

ISE 407 Lecture 13 33

Locks

• Locking can be used to prevent data conflicts.

• Julia offers two kinds of locks: SpinLock() and ReentrantLock().

• The latter should be used in general, especially when the task may need
to invoke the lock multiple times.

julia> l = ReentrantLock()

julia> lock(l) do

foo()

end

julia> if !islocked(l)

lock(l)

foo()

unlock(l)

end

33

ISE 407 Lecture 13 34

Atomic Variables

• It is also possible to create variables that can only be accessed by one
thread at a time.

julia> let x = 0

@threads for i in 1:1000

x += 1

end

println(x)

end

828

julia> let x = Atomic{Int}(0)

@threads for i in 1:1000

atomic_add!(x ,1)

end

println(x[])

end

1000

• Note that there is potential inefficiency being introduced here.

• This may not the right way to do this computation in practice.

34

ISE 407 Lecture 13 35

Threaded Mapping

function collatz(x)

if iseven(x)

x ÷ 2

else

3x + 1

end

end

function collatz_stopping_time(x)

n = 0

while true

x == 1 && return n

n += 1

x = collatz(x)

end

end

plt = scatter(

ThreadsX.map(collatz_stopping_time, 1:10_000),

xlabel = "Initial value",

ylabel = "Stopping time",

label = "",

markercolor = 1,

markerstrokecolor = 1,

markersize = 3,

size = (450, 300),

)

Source: https:

//juliafolds.github.io/data-parallelism/tutorials/quick-introduction/

35

ISE 407 Lecture 13 36

Collatz Plot

36

ISE 407 Lecture 13 37

Distributed Computing

• Julia can add and remove processes dynamically.

• These processes can be running locally or remotely.

• The message-passing is implicit and implemented through remote
references and remote procedure calls.

julia> addprocs(3)

julia> workers()

3-element Array{Int64,1}:

1

2

3

julia> workers()

julia> addprocs([("polyps.ie.lehigh.edu", 1)])

• Note that the above requires that you have passwordless ssh access set
up and also that the directory structure is the same on the two machines.

37

ISE 407 Lecture 13 38

Remote References

In distributed mode, you ask for a function to be run on a remote
process/machine and the result returned to the local process.

julia> s = @spawnat 3 sum(rand(1000))

Future(3, 1, 5, nothing)

julia> fetch(s)

506.92191123610934

julia> s = @spawnat 3 sleep(10)

@elapsed wait(s)

10.0018157

julia> @elapsed s = remotecall_wait(sleep, 3, 10)

10.2019344

38

ISE 407 Lecture 13 39

Defining Functions Remotely

• There is some subtlety around ensuring that variables and functions are
defined on remote processes that you need to take care of.

• The @everywhere macro can be used to define a function within all
processes.

julia> @everywhere function fib(n)

if n < 2

return n

else

return fib(n-1) + fib(n-2)

end

end

julia> @elapsed begin

for i in 1:4

t[i] = fib(45)

end

end

19.8323551

julia> @elapsed begin

for i in workers()

t[i] = @spawnat i fib(45)

end

for i in workers()

wait(t[i])

end

end

7.4685307

39

ISE 407 Lecture 13 40

Parallel Fibonacci

julia> @everywhere function fib_parallel(n)

if n < 40

return fib(n)

else

x = @spawn fib_parallel(n-1)

y = fib_parallel(n-2)

return fetch(x) + y

end

end

julia> @elapsed fib_parallel(45)

2.6285944

40

ISE 407 Lecture 13 41

Shared Arrays

• In distributed mode, each process gets its own copy of variables.

• The following will not work as one might expect.

a = zeros(100000)

@distributed for i = 1:100000

a[i] = i

end

• Shared arrays are made for this purpose.

• Note that there is implicit data maovement happening, though.

using SharedArrays

a = SharedArray{Float64}(10)

@distributed for i = 1:10

a[i] = i

end

41

ISE 407 Lecture 13 42

Other Constructs

nheads = @distributed (+) for i = 1:200000000

Int(rand(Bool))

end

using FLoops

@floop for (x, y) in zip(1:3, 1:2:6)

a = x + y

b = x - y

@reduce(s += a, t += b)

end

(s, t)

42

ISE 407 Lecture 13 43

Comments

• Making even simple code efficient in parallel is difficult and requires
attention to details.

• The built-in @threads and @distributed are a good starting point,
but have limitations.

• There are many gotchas, such as the fact that there is no threaded
garbage collector.

• Results may be non-intuitive.

julia> @btime @distributed (+) for i in 1:100000000

1

end

314.100 µs (400 allocations: 16.83 KiB)

100000000

julia> @btime let x = Threads.Atomic{Int}(0)

Threads.@threads for i in 1:100000000

Threads.atomic_add!(x, 1)

end

end

1.982 s (52 allocations: 6.19 KiB)

• We have only scratched the surace here.

43

ISE 407 Lecture 13 44

Libraries for Parallelism in Julia

• Dagger.jl

• FLoops.jl

• KissThreading.jl

• Parallelism.jl

• Strided.jl

• TensorOperations.jl

• ThreadPools.jl

• ThreadTools.jl

• ThreadsX.jl

• Transducers.jl

• Tullio.jl

44

