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Reading for This Lecture

• Assessing the Effectiveness of (Parallel) Branch-and-Bound Algorithms

• A Theoretician’s Guide to the Experimental Analysis of Algorithms

• Statistical Analysis of Computational Tests of Algorithms and Heuristics
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Analysis with Curated Test Sets

• It is common in optimization to do testing with relatively small curated
test sets.

• Such test sets cannot usually be considered to be a random smaple from
a larger class.

• The instances may vary substantially from each other in many ways
(sometimes by design).

• The difficulty of the instances may vary widely.

• It is thus difficult to generalize results beyond the test set.

• Nevertheless, these test sets often represent problems we care about and
we would like to compare performance of different algorithms on them.

• Such analysis typically involves pairwise comparison of performance on
individual instances.
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Summary Statistics

• It is common for comparison to be done using summary statistics across
a test set.

• Summary statistics may be useful as a first cut, but they hide information
useful for comparison.

• They can also result in wildly incorrect conclusions due to outliers.

• The best analyses allow multi-faceted conclusions: “Algorithm A is better
on small instances, while algorithm B is better on larger...”

• Because of the relatively small test sets, the results must be put in the
proper context.

• It may be difficult to draw “statistically valid” conclusions.
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Visualization

• There are a number of visualization techniques that can allow for analysis
that is more refined than that allowed by summary statistics.

• These are based on the same idea of constructing empirical distribution
functions, but for different, more restricted distributions.

• Existing methods of visualizing algorithmic effectiveness data.

– Performance profiles
– Baseline profiles
– Cumulative profiles
– Pair plots
– Interactive plots
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Performance Profiles

• Performance profiles provide a visual summary of how algorithms compare
on a measure of efficiency across a test set.

• For algorithm a and instance i, we compute a performance ratio

rai =
tai

mina′∈A ta′i
.

• Instances that fail to solve (e.g., time out) are given a ratio of ∞.

• We then plot the empirical cumulative distribution function of the
performance ratio for each algorithm.

• The idea of is to create a scale-invariant way of comparing across a set
of instances with disparate running times.

• This allows for test sets with instances of different sizes and difficulties.

• This method has some drawbacks

– It can end up giving too much weight to “easy” instances.
– The “virtual best” is also not necessarily a realistic baseline.
– There is no additional information on instances that fail.
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Performance Profile
julia> rng = MersenneTwister(12345);

julia> q = @benchmark sort(x, alg=QuickSort) evals=10 samples=10000 setup=(x=rand(rng, 1000)) seconds=10000

julia> rng = MersenneTwister(12345);

julia> m = @benchmark sort(x, alg=MergeSort) evals=10 samples=10000 setup=(x=rand(rng, 1000)) seconds=10000

julia> mm = sort(m.times ./ min.(q.times, m.times))

julia> qq = sort(q.times ./ min.(q.times, m.times))

julia> plot(mm, pc(mm), l=2, label="MergeSort")

julia> plot(qq, pc(qq), l=2, label="QuickSort")

The above code assumes the times are not sorted (use my fork of BenchmarkTools)!
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Performance Profile on a Smaller Test Set

• Below is a profile that is typical of what would be produced with a
curated test set.

• There is not really enough data to estimate any true underlying
distribution.

• Still, it may be possible to compare performance on the test set itself.
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Baseline Profiles

• Note that we could easily extend the concept of performance profile to
ratios using any baseline.

• If there is a natural baseline for comparison (such as the best previously
existing algorithm), this may make a better baseline.

• Using “virtual best” can create misleading results when there are more
than two solvers.
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Cumulative Profiles

• Cumulative profiles plot the empirical cumulative distribution function of
the resource consumption, as before.

• This is only an estimate of the distirbution on this test set, not the
“true” distribution on some underlying larger class.

• We can be extend beyond the time limit used in the actual computation
by use of an appropriate “measure of progress.”
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Pair Plots

julia> scatter(q.times*1e-6, m.times*1e-6, xlabel="Quicksort running times",

ylabel="Mergesort running timea", label="Quick vs Merge", title="Comparing

Sorting Algorithms", xlim=(0.028, .15), ylim=(0.028,.15))

• Pair plots display ordered pairs of a given measure of efficiency for two
algorithms.

• Each plotted point represents one instance.

• Algorithms are compared based on the number of plotted points
above/below the center line.
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Interactive Plots

• The gold standard for data visualization is an interactive plot that allows
readers/users to display algorithmic data in an interactive way.

• This is becoming possible with new visualizations sites/packages.

– Plot.ly
– Bokeh

• Be creative and invent your own data visualization!
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Additional Challenges

• Accounting for variability, non-determinism, and stochasticity

• Comparison to existing algorithms

• Comparing algorithms for difficult problems

• Comparing to existing algorithms

• Drawing valid conclusions

• Ensuring replicability
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Accounting for Variability

• In empirical analysis, we must take account of the fact that running
times are inherently variable for multiple reasons.

• If we are measuring wallclock time, times may vary substantially, even
for identical executions.

• It helps to control the environment using tools, such as cpuset that
reserve resources for use only for a specific purpose.

• In the case of parallel processing, stochasticity may also arise due to
non-determinism in the case of asynchronous implementations (more on
this later).

• Even sequential algorithms can be non-deterministic due to
randomization.

• In such case, multiple evaluations may be used to estimate the affect of
this randomness.

• If necessary, statistical analysis may be used to analyze the results, but
this is beyond the scope of this course.
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Performance Variability on Difficult Problems

• Algorithms for problems in the class NP-complete are generally much
more difficult to assess and display a great degree of unpredictability.

• These algorithms are more susceptible to random fluctuations from
apparently incidental environmental differences.

• Minor differences in parameter settings or input format can lead to wild
fluctuations in the measured performance.

• Algorithms for polynomially solvable problems tend to be more
predictable, though even these can exhibit large fluctuations in behavior
in some cases.

• It is important to first understand the features of the problem class of
interest in selecting the proper approach to analysis.
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Performance Variability

Source: https://opus4.kobv.de/opus4-zib/files/1295/miplib5.pdf
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Comparing Efficiency on Difficult Instances

• A particularly challenging aspect of empirical testing is comparing
algorithms for difficult classes of problems.

• When one or more algorithms do not terminate within a reasonable time,
we need something beyond just a measure of efficiency.

• One alternative is to simply report the fraction of instances successfully
solved as another statistic.

• Another is to use a measure of progress or a measure of work.
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Measures of Work/Progress

Definition 1. A measure of progress is an estimate or proxy for the fraction
of a full computation performed by an algorithm, given a fixed bundle of
resources.

• Measures of progress may be very difficult to derive in some cases.

• A measure of work is a direct measure of the work that has been
performed in the computation and is much easier to derive.

• A measure of work may be a proxy for a measure of progress, but not
always.
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Difficulty of Measuring Progress

• For a measure of work to serve as a measure of progress, we need to
know the total amount of work expected to solve the problems.

• In the case of NP-complete problems, this depends highly on the “guided
luck” we discussed earlier.

• The “luck” involves avoiding dead ends and this is what sophisticated
algorithms attempt to do.

• The “dead ends” contribute to work, but not necessarily “progress.”

• Execution may vary dramatically based on seemingly inconsequential
perturbations to the algorithm.

• In general, one can only expect to derive reliable such measures in cases
where the computation is somewhat predictable.

• Unfortunately, these are the “easy” cases.
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What is a “Fair” Comparison?

• Test sets may create bias if not chosen properly.

• The testing platforms can also create bias if hardware favors a particular
implementation.

• Hold as many things constant as possible.

• Seemingly inconsequential or irrelevant differences in implementation can
cloud results.

– Underlying data structures.
– Memory allocation patterns and cache effects.
– Implementation of low-level operations.
– Compiler differences (optimization level).
– Operating system.
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Comparing to Other Codes

• Rigorously comparing to an algorithm implemented by someone else can
be difficult.

• It is nearly impossible to fairly compare to results reported in the
literature.

• Ideally, however, obtaining the source code for any alternative
implementations is best.

• In some cases, it may be possible to re-implement an algorithm from the
literature, but you are unlikely to do this fairly.

• If all else fails, scaling running times from previous computational
experiments may give some idea.
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Drawing Valid Conclusions

• If nothing else, be sure to draw only truly valid conclusions from your
results.

• Doing so requires first and foremost that your code is (nearly) error free.

• You must also provide some honest answers to soul-searching questions.

– How general are the results truly?
– Do they generalize
∗ to other platforms,
∗ To other instances,
∗ To other implementations,
∗ ...

– Has the test set been hand-massaged in any way?
– How fair is the comparison to other algorithms?

• In almost all cases, the degree to which the results can be generalized is
very limited and it is important to state this.
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Replicability and Generalizability

• Ultimately, your results will only be important if others can replicate
them.

• Allowing replication involves multiple good practices.

– Reporting all details of experiments.
– Tracking changes carefully.
– Describing important details.
– Providing versioned open source code.
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Tracking Changes

• It is extremely important to be diligent in tracking changes while
developing implementations.

• There are multiple reasons for this.

• Most importantly, it makes debugging performance issues much easier!

• But it also makes it possible to archive precise version that were used for
particular experiments.

• Even if further development has happened in the meantime, published
results should always be possible to replicate.

• This can be done with version control software, such as git.

• We’ll discuss this more later.
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Good Publication Practices

• To make your mark and do good research, the final step is to publish
well.

– Don’t fail to reveal important details
– Publish source if at all possible.
– Draw only valid conclusions.
– Report all relevant (and even irrelevant) information about the

experiments!

• This is important both for your own integrity and that of the scientific
establishment.

24



ISE 407 Leture 11 25

Empirical versus Theoretical Analysis

• For sequential algorithms, asymptotic analysis is often good enough for
choosing between algorithms.

• It is less ideal with respect to tuning of implementational details.

• For parallel algorithms, asymptotic analysis is far more problematic.

• The details not captured by the model of computation can matter much
more.

• There is an additional dimension on which we must compare algorithms:
scalability.
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