
Computational Optimization
ISE 407

Lecture 11

Dr. Ted Ralphs



ISE 407 Leture 11 1

Reading for This Lecture

• Assessing the Effectiveness of (Parallel) Branch-and-Bound Algorithms

• A Theoretician’s Guide to the Experimental Analysis of Algorithms

• Statistical Analysis of Computational Tests of Algorithms and Heuristics

1



ISE 407 Leture 11 2

Analysis with Curated Test Sets

• It is common in optimization to do testing with relatively small curated
test sets.

• Such test sets cannot usually be considered to be a random smaple from
a larger class.

• The instances may vary substantially from each other in many ways
(sometimes by design).

• The difficulty of the instances may vary widely.

• It is thus difficult to generalize results beyond the test set.

• Nevertheless, these test sets often represent problems we care about and
we would like to compare performance of different algorithms on them.

• Such analysis typically involves pairwise comparison of performance on
individual instances.

2



ISE 407 Leture 11 3

Summary Statistics

• It is common for comparison to be done using summary statistics across
a test set.

• Summary statistics may be useful as a first cut, but they hide information
useful for comparison.

• They can also result in wildly incorrect conclusions due to outliers.

• The best analyses allow multi-faceted conclusions: “Algorithm A is better
on small instances, while algorithm B is better on larger...”

• Because of the relatively small test sets, the results must be put in the
proper context.

• It may be difficult to draw “statistically valid” conclusions.

3



ISE 407 Leture 11 4

Visualization

• There are a number of visualization techniques that can allow for analysis
that is more refined than that allowed by summary statistics.

• These are based on the same idea of constructing empirical distribution
functions, but for different, more restricted distributions.

• Existing methods of visualizing algorithmic effectiveness data.

– Performance profiles
– Baseline profiles
– Cumulative profiles
– Pair plots
– Interactive plots

4



ISE 407 Leture 11 5

Performance Profiles

• Performance profiles provide a visual summary of how algorithms compare
on a measure of efficiency across a test set.

• For algorithm a and instance i, we compute a performance ratio

rai =
tai

mina′∈A ta′i
.

• Instances that fail to solve (e.g., time out) are given a ratio of ∞.

• We then plot the empirical cumulative distribution function of the
performance ratio for each algorithm.

• The idea of is to create a scale-invariant way of comparing across a set
of instances with disparate running times.

• This allows for test sets with instances of different sizes and difficulties.

• This method has some drawbacks

– It can end up giving too much weight to “easy” instances.
– The “virtual best” is also not necessarily a realistic baseline.
– There is no additional information on instances that fail.

5



ISE 407 Leture 11 6

Performance Profile
julia> rng = MersenneTwister(12345);

julia> q = @benchmark sort(x, alg=QuickSort) evals=10 samples=10000 setup=(x=rand(rng, 1000)) seconds=10000

julia> rng = MersenneTwister(12345);

julia> m = @benchmark sort(x, alg=MergeSort) evals=10 samples=10000 setup=(x=rand(rng, 1000)) seconds=10000

julia> mm = sort(m.times ./ min.(q.times, m.times))

julia> qq = sort(q.times ./ min.(q.times, m.times))

julia> plot(mm, pc(mm), l=2, label="MergeSort")

julia> plot(qq, pc(qq), l=2, label="QuickSort")

The above code assumes the times are not sorted (use my fork of BenchmarkTools)!

6



ISE 407 Leture 11 7

Performance Profile on a Smaller Test Set

• Below is a profile that is typical of what would be produced with a
curated test set.

• There is not really enough data to estimate any true underlying
distribution.

• Still, it may be possible to compare performance on the test set itself.

7



ISE 407 Leture 11 8

Baseline Profiles

• Note that we could easily extend the concept of performance profile to
ratios using any baseline.

• If there is a natural baseline for comparison (such as the best previously
existing algorithm), this may make a better baseline.

• Using “virtual best” can create misleading results when there are more
than two solvers.

8



ISE 407 Leture 11 9

Cumulative Profiles

• Cumulative profiles plot the empirical cumulative distribution function of
the resource consumption, as before.

• This is only an estimate of the distirbution on this test set, not the
“true” distribution on some underlying larger class.

• We can be extend beyond the time limit used in the actual computation
by use of an appropriate “measure of progress.”

9



ISE 407 Leture 11 10

Pair Plots

julia> scatter(q.times*1e-6, m.times*1e-6, xlabel="Quicksort running times",

ylabel="Mergesort running timea", label="Quick vs Merge", title="Comparing

Sorting Algorithms", xlim=(0.028, .15), ylim=(0.028,.15))

• Pair plots display ordered pairs of a given measure of efficiency for two
algorithms.

• Each plotted point represents one instance.

• Algorithms are compared based on the number of plotted points
above/below the center line.

10



ISE 407 Leture 11 11

Interactive Plots

• The gold standard for data visualization is an interactive plot that allows
readers/users to display algorithmic data in an interactive way.

• This is becoming possible with new visualizations sites/packages.

– Plot.ly
– Bokeh

• Be creative and invent your own data visualization!

11



ISE 407 Leture 11 12

Additional Challenges

• Accounting for variability, non-determinism, and stochasticity

• Comparison to existing algorithms

• Comparing algorithms for difficult problems

• Comparing to existing algorithms

• Drawing valid conclusions

• Ensuring replicability

12



ISE 407 Leture 11 13

Accounting for Variability

• In empirical analysis, we must take account of the fact that running
times are inherently variable for multiple reasons.

• If we are measuring wallclock time, times may vary substantially, even
for identical executions.

• It helps to control the environment using tools, such as cpuset that
reserve resources for use only for a specific purpose.

• In the case of parallel processing, stochasticity may also arise due to
non-determinism in the case of asynchronous implementations (more on
this later).

• Even sequential algorithms can be non-deterministic due to
randomization.

• In such case, multiple evaluations may be used to estimate the affect of
this randomness.

• If necessary, statistical analysis may be used to analyze the results, but
this is beyond the scope of this course.

13



ISE 407 Leture 11 14

Performance Variability on Difficult Problems

• Algorithms for problems in the class NP-complete are generally much
more difficult to assess and display a great degree of unpredictability.

• These algorithms are more susceptible to random fluctuations from
apparently incidental environmental differences.

• Minor differences in parameter settings or input format can lead to wild
fluctuations in the measured performance.

• Algorithms for polynomially solvable problems tend to be more
predictable, though even these can exhibit large fluctuations in behavior
in some cases.

• It is important to first understand the features of the problem class of
interest in selecting the proper approach to analysis.

14



ISE 407 Leture 11 15

Performance Variability

Source: https://opus4.kobv.de/opus4-zib/files/1295/miplib5.pdf

15



ISE 407 Leture 11 16

Comparing Efficiency on Difficult Instances

• A particularly challenging aspect of empirical testing is comparing
algorithms for difficult classes of problems.

• When one or more algorithms do not terminate within a reasonable time,
we need something beyond just a measure of efficiency.

• One alternative is to simply report the fraction of instances successfully
solved as another statistic.

• Another is to use a measure of progress or a measure of work.

16



ISE 407 Leture 11 17

Measures of Work/Progress

Definition 1. A measure of progress is an estimate or proxy for the fraction
of a full computation performed by an algorithm, given a fixed bundle of
resources.

• Measures of progress may be very difficult to derive in some cases.

• A measure of work is a direct measure of the work that has been
performed in the computation and is much easier to derive.

• A measure of work may be a proxy for a measure of progress, but not
always.

17



ISE 407 Leture 11 18

Difficulty of Measuring Progress

• For a measure of work to serve as a measure of progress, we need to
know the total amount of work expected to solve the problems.

• In the case of NP-complete problems, this depends highly on the “guided
luck” we discussed earlier.

• The “luck” involves avoiding dead ends and this is what sophisticated
algorithms attempt to do.

• The “dead ends” contribute to work, but not necessarily “progress.”

• Execution may vary dramatically based on seemingly inconsequential
perturbations to the algorithm.

• In general, one can only expect to derive reliable such measures in cases
where the computation is somewhat predictable.

• Unfortunately, these are the “easy” cases.

18



ISE 407 Leture 11 19

What is a “Fair” Comparison?

• Test sets may create bias if not chosen properly.

• The testing platforms can also create bias if hardware favors a particular
implementation.

• Hold as many things constant as possible.

• Seemingly inconsequential or irrelevant differences in implementation can
cloud results.

– Underlying data structures.
– Memory allocation patterns and cache effects.
– Implementation of low-level operations.
– Compiler differences (optimization level).
– Operating system.

19



ISE 407 Leture 11 20

Comparing to Other Codes

• Rigorously comparing to an algorithm implemented by someone else can
be difficult.

• It is nearly impossible to fairly compare to results reported in the
literature.

• Ideally, however, obtaining the source code for any alternative
implementations is best.

• In some cases, it may be possible to re-implement an algorithm from the
literature, but you are unlikely to do this fairly.

• If all else fails, scaling running times from previous computational
experiments may give some idea.

20



ISE 407 Leture 11 21

Drawing Valid Conclusions

• If nothing else, be sure to draw only truly valid conclusions from your
results.

• Doing so requires first and foremost that your code is (nearly) error free.

• You must also provide some honest answers to soul-searching questions.

– How general are the results truly?
– Do they generalize
∗ to other platforms,
∗ To other instances,
∗ To other implementations,
∗ ...

– Has the test set been hand-massaged in any way?
– How fair is the comparison to other algorithms?

• In almost all cases, the degree to which the results can be generalized is
very limited and it is important to state this.

21



ISE 407 Leture 11 22

Replicability and Generalizability

• Ultimately, your results will only be important if others can replicate
them.

• Allowing replication involves multiple good practices.

– Reporting all details of experiments.
– Tracking changes carefully.
– Describing important details.
– Providing versioned open source code.

22



ISE 407 Leture 11 23

Tracking Changes

• It is extremely important to be diligent in tracking changes while
developing implementations.

• There are multiple reasons for this.

• Most importantly, it makes debugging performance issues much easier!

• But it also makes it possible to archive precise version that were used for
particular experiments.

• Even if further development has happened in the meantime, published
results should always be possible to replicate.

• This can be done with version control software, such as git.

• We’ll discuss this more later.

23



ISE 407 Leture 11 24

Good Publication Practices

• To make your mark and do good research, the final step is to publish
well.

– Don’t fail to reveal important details
– Publish source if at all possible.
– Draw only valid conclusions.
– Report all relevant (and even irrelevant) information about the

experiments!

• This is important both for your own integrity and that of the scientific
establishment.

24



ISE 407 Leture 11 25

Empirical versus Theoretical Analysis

• For sequential algorithms, asymptotic analysis is often good enough for
choosing between algorithms.

• It is less ideal with respect to tuning of implementational details.

• For parallel algorithms, asymptotic analysis is far more problematic.

• The details not captured by the model of computation can matter much
more.

• There is an additional dimension on which we must compare algorithms:
scalability.

25


