Computational Optimization
ISE 407

Lecture 11

Dr. Ted Ralphs

ISE 407 Leture 11 1

Reading for This Lecture

e Assessing the Effectiveness of (Parallel) Branch-and-Bound Algorithms
e A Theoretician’'s Guide to the Experimental Analysis of Algorithms

e Statistical Analysis of Computational Tests of Algorithms and Heuristics

ISE 407 Leture 11 2

Analysis with Curated Test Sets

e |t is common in optimization to do testing with relatively small curated
test sets.

e Such test sets cannot usually be considered to be a random smaple from
a larger class.

e The instances may vary substantially from each other in many ways
(sometimes by design).

e The difficulty of the instances may vary widely.
e [t is thus difficult to generalize results beyond the test set.

e Nevertheless, these test sets often represent problems we care about and
we would like to compare performance of different algorithms on them.

e Such analysis typically involves pairwise comparison of performance on
individual instances.

ISE 407 Leture 11 3

Summary Statistics

e |t is common for comparison to be done using summary statistics across
a test set.

e Summary statistics may be useful as a first cut, but they hide information
useful for comparison.

e They can also result in wildly incorrect conclusions due to outliers.

e The best analyses allow multi-faceted conclusions: “Algorithm A is better
on small instances, while algorithm B is better on larger...”

e Because of the relatively small test sets, the results must be put in the
proper context.

e |t may be difficult to draw “statistically valid” conclusions.

ISE 407 Leture 11 4

Visualization

e There are a number of visualization techniques that can allow for analysis
that is more refined than that allowed by summary statistics.

e These are based on the same idea of constructing empirical distribution
functions, but for different, more restricted distributions.

e Existing methods of visualizing algorithmic effectiveness data.

— Performance profiles
— Baseline profiles

— Cumulative profiles
— Pair plots

— Interactive plots

ISE 407 Leture 11 5

Performance Profiles

e Performance profiles provide a visual summary of how algorithms compare
on a measure of efficiency across a test set.

e For algorithm a and instance i, we compute a performance ratio

tai

mina/GA ta’z'

Tai =

e Instances that fail to solve (e.g., time out) are given a ratio of oc.

e We then plot the empirical cumulative distribution function of the
performance ratio for each algorithm.

e The idea of is to create a scale-invariant way of comparing across a set
of instances with disparate running times.

e This allows for test sets with instances of different sizes and difficulties.
e [his method has some drawbacks

— It can end up giving too much weight to “easy” instances.
— The “virtual best” is also not necessarily a realistic baseline.
— There is no additional information on instances that fail.

ISE 407 Leture 11 6

Performance Profile

julia> rng = MersenneTwister(12345);
julia> q = @benchmark sort(x, alg=QuickSort) evals=10 samples=10000 setup=(x=rand(rng, 1000)) seconds=10000
julia> rng = MersenneTwister(12345);

julia> m = @benchmark sort(x, alg=MergeSort) evals=10 samples=10000 setup=(x=rand(rng, 1000)) seconds=10000
julia> mm = sort(m.times ./ min.(q.times, m.times))

julia> qq = sort(q.times ./ min.(q.times, m.times))

julia> plot(mm, pc(mm), 1=2, label="MergeSort")

julia> plot(qq, pc(qq), 1=2, label="QuickSort")

Comparing Sorting Algorithms

1.00 |-
f"'F'_—#_‘_ ——— MergeSort
QuickSort
0.75 -
050 -
025
0‘00 C L 'l A i J
10 15 20 25 3.0

The above code assumes the times are not sorted (use my fork of BenchmarkTools)!

ISE 407 Leture 11 7

Performance Profile on a Smaller Test Set

e Below is a profile that is typical of what would be produced with a
curated test set.

e There is not really enough data to estimate any true underlying
distribution.

e Still, it may be possible to compare performance on the test set itself.

Performance Profile on Subset of COPS
T T T T

09

08} A 2

P

-—-- LANCELOT
” S [MINOS
e — SNOPT
1000

ISE 407 Leture 11 8

Baseline Profiles

e Note that we could easily extend the concept of performance profile to
ratios using any baseline.

e If there is a natural baseline for comparison (such as the best previously
existing algorithm), this may make a better baseline.

e Using “virtual best” can create misleading results when there are more
than two solvers.

Comparing Sorting Algorithms

1.00
MergeSort
QuickSort

0.75 -

050 +

025 -

0.00 -

ISE 407 Leture 11 9

Cumulative Profiles

e Cumulative profiles plot the empirical cumulative distribution function of
the resource consumption, as before.

e This is only an estimate of the distirbution on this test set, not the
“true” distribution on some underlying larger class.

e We can be extend beyond the time limit used in the actual computation
by use of an appropriate “measure of progress.”

20+

15+

10+

1 10 100 1000 7200 10% 20%

ISE 407 Leture 11

10

Pair Plots

julia> scatter(q.times*le-6, m.times*le-6, xlabel="Quicksort running times",

ylabel="Mergesort running timea", label="Quick vs Merge", title="Comparing
Sorting Algorithms", x1im=(0.028, .15), ylim=(0.028,.15))

e Pair plots display ordered pairs of a given measure of efficiency for two

algorithms.

e Each plotted point represents one instance.

e Algorithms are compared based on the number of plotted points
above/below the center line.

Mergesort running timea

0125

0.100

0.075

0.050

Comparing Sorting Algorithms

@ Quick vs Merge

0.050

0075 0.100
Quicksort running times

0125

ISE 407 Leture 11 11

Interactive Plots

e The gold standard for data visualization is an interactive plot that allows
readers/users to display algorithmic data in an interactive way.

e This is becoming possible with new visualizations sites/packages.

— Plot.ly
— Bokeh

e Be creative and invent your own data visualization!

ISE 407 Leture 11

12

Additional Challenges

Accounting for variability, non-determinism, and stochasticity
Comparison to existing algorithms

Comparing algorithms for difficult problems

Comparing to existing algorithms

Drawing valid conclusions

Ensuring replicability

ISE 407 Leture 11 13

Accounting for Variability

e In empirical analysis, we must take account of the fact that running
times are inherently variable for multiple reasons.

e |f we are measuring wallclock time, times may vary substantially, even
for identical executions.

e |t helps to control the environment using tools, such as cpuset that
reserve resources for use only for a specific purpose.

e In the case of parallel processing, stochasticity may also arise due to
non-determinism in the case of asynchronous implementations (more on
this later).

e Even sequential algorithms can be non-deterministic due to
randomization.

e In such case, multiple evaluations may be used to estimate the affect of
this randomness.

e |f necessary, statistical analysis may be used to analyze the results, but
this is beyond the scope of this course.

ISE 407 Leture 11 14

Performance Variability on Difficult Problems

e Algorithms for problems in the class NP-complete are generally much
more difficult to assess and display a great degree of unpredictability.

e These algorithms are more susceptible to random fluctuations from
apparently incidental environmental differences.

e Minor differences in parameter settings or input format can lead to wild
fluctuations in the measured performance.

e Algorithms for polynomially solvable problems tend to be more
predictable, though even these can exhibit large fluctuations in behavior
InN some cases.

e |t is important to first understand the features of the problem class of
interest in selecting the proper approach to analysis.

ISE 407 Leture 11

15

Performance Variability

4080
o
— 30
= oo
£ a0 . e — I
H -
= 100
!] 1a an an 40] & ™ = a0 10
Permutation
(a) Instance ex9
2,000 —
e
= “F,Wwwzmmw’w@m:
-'—" =nnn ﬂ‘ﬂzﬁmmm
—
=
B o1
' 1 ar 3 40 n] L1 = 50 15
Permutation
(b) Instance pgh_34
3 frea]
o
= ,
:"ﬁ =
& R
| !
B
[Eraeeneitn i :ﬂ:wnmc
1 n 5 4 B i ™ = o 15
Permutation

(c) Instance neosl3

T [h]

Time [1]

o
::U
e
™
mﬂmﬂﬂmmﬂm
WWW
! 3 3 4 = ™ ® 5 1
Permulalion
(d) Instance bnatt3s0
"
oo™
o
o
e
10 i} 30 40 ol & ™ = o0 1m0
Permutation

(e) Instance enlight13

Fig. 3: Solution times for 100 permutations

Source: https://opusd.kobv.de/opus4-zib/files/1295/miplib5. pdf

ISE 407 Leture 11 16

Comparing Efficiency on Difficult Instances

e A particularly challenging aspect of empirical testing is comparing
algorithms for difficult classes of problems.

e \When one or more algorithms do not terminate within a reasonable time,
we need something beyond just a measure of efficiency.

e One alternative is to simply report the fraction of instances successfully
solved as another statistic.

e Another is to use a measure of progress or a measure of work.

ISE 407 Leture 11 17

Measures of Work /Progress

Definition 1. A measure of progress is an estimate or proxy for the fraction
of a full computation performed by an algorithm, given a fixed bundle of
resources.

e Measures of progress may be very difficult to derive in some cases.

e A measure of work is a direct measure of the work that has been
performed in the computation and is much easier to derive.

e A measure of work may be a proxy for a measure of progress, but not
always.

ISE 407 Leture 11 18

Difficulty of Measuring Progress

e For a measure of work to serve as a measure of progress, we need to
know the total amount of work expected to solve the problems.

e |n the case of NP-complete problems, this depends highly on the “guided
luck” we discussed earlier.

e The “luck” involves avoiding dead ends and this is what sophisticated
algorithms attempt to do.

e The “dead ends’ contribute to work, but not necessarily “progress.”

e Execution may vary dramatically based on seemingly inconsequential
perturbations to the algorithm.

e |n general, one can only expect to derive reliable such measures in cases
where the computation is somewhat predictable.

e Unfortunately, these are the “easy” cases.

ISE 407 Leture 11 19

What is a “Fair” Comparison?

e Test sets may create bias if not chosen properly.

e The testing platforms can also create bias if hardware favors a particular
implementation.

e Hold as many things constant as possible.

e Seemingly inconsequential or irrelevant differences in implementation can
cloud results.

— Underlying data structures.

— Memory allocation patterns and cache effects.
— Implementation of low-level operations.

— Compiler differences (optimization level).

— Operating system.

ISE 407 Leture 11 20

Comparing to Other Codes

e Rigorously comparing to an algorithm implemented by someone else can
be difficult.

e |t is nearly impossible to fairly compare to results reported in the
literature.

e |deally, however, obtaining the source code for any alternative
implementations is best.

e |n some cases, it may be possible to re-implement an algorithm from the
literature, but you are unlikely to do this fairly.

o If all else fails, scaling running times from previous computational
experiments may give some idea.

ISE 407 Leture 11 21

Drawing Valid Conclusions

e If nothing else, be sure to draw only truly valid conclusions from your
results.

e Doing so requires first and foremost that your code is (nearly) error free.

e You must also provide some honest answers to soul-searching questions.

How general are the results truly?
Do they generalize

x to other platforms,

* To other instances,

x To other implementations,

X

Has the test set been hand-massaged in any way?
How fair is the comparison to other algorithms?

e In almost all cases, the degree to which the results can be generalized is
very limited and it is important to state this.

ISE 407 Leture 11 22

Replicability and Generalizability

e Ultimately, your results will only be important if others can replicate
them.

e Allowing replication involves multiple good practices.

— Reporting all details of experiments.
— Tracking changes carefully.

— Describing important details.

— Providing versioned open source code.

ISE 407 Leture 11 23

Tracking Changes

o |t is extremely important to be diligent in tracking changes while
developing implementations.

e There are multiple reasons for this.
e Most importantly, it makes debugging performance issues much easier!

e But it also makes it possible to archive precise version that were used for
particular experiments.

e Even if further development has happened in the meantime, published
results should always be possible to replicate.

e This can be done with version control software, such as git.

e \We'll discuss this more later.

ISE 407 Leture 11 24

Good Publication Practices

e To make your mark and do good research, the final step is to publish
well.

— Don't fail to reveal important details

— Publish source if at all possible.

— Draw only valid conclusions.

— Report all relevant (and even irrelevant) information about the
experiments!

e This is important both for your own integrity and that of the scientific
establishment.

ISE 407 Leture 11 25

Empirical versus Theoretical Analysis

e For sequential algorithms, asymptotic analysis is often good enough for
choosing between algorithms.

e |t is less ideal with respect to tuning of implementational details.
e For parallel algorithms, asymptotic analysis is far more problematic.

e The details not captured by the model of computation can matter much
more.

e There is an additional dimension on which we must compare algorithms:
scalability.

