Computational Optimization
ISE 407

Lecture 10

Dr. Ted Ralphs

ISE 407 Leture 10 1

Reading for This Lecture

e Assessing the Effectiveness of (Parallel) Branch-and-Bound Algorithms
e A Theoretician’'s Guide to the Experimental Analysis of Algorithms

e Statistical Analysis of Computational Tests of Algorithms and Heuristics

ISE 407 Leture 10 2

Empirical Analysis of Algorithms

e |n practice, we will often need to resort to empirical rather than theoretical
analysis to compare algorithms.

— We may want to know something about effectiveness of the algorithm

“on average” for real instances.
— Our model of computation may not capture important effects of the

hardware architecture that arise in practice.
— There may be implementational details that affect constant factors

and are not captured by asymptotic analysis.

e For this purpose, we need a methodology for comparing algorithms based
on real-world performance.

ISE 407 Leture 10 3

Exact Versus Heuristic Algorithms

e In optimization, an “exact” algorithm is one that outputs a result
(typically a solution) and a proof (i.e., a certificate).

e The proof is usually given in terms of primal and dual solutions/bounds.

e Because of numerical issues, it is usually not feasible to get “exact”
solutions.

e Nevertheless, we can define termination criteria in terms of the “primal-
dual gap” or some other criteria related to accuracy.

e The important thing is that the criteria is well-defined and independent
of the algorithm.

e The methodology we describe is focused on exact algorithms having such
well-defined termination criteria.

e This ensures comparability of results.

e Comparison of heuristic algorithms is much different and we won't discuss
that.

ISE 407 Leture 10 4

Issues to Consider

e Empirical analysis introduces many more factors that need to be
controlled for in some way.

— Test platform (hardware, language, compiler)
— Measures of effectiveness (what to compare)

— Benchmark test set (what instances to test on)
— Algorithmic parameters

— Implementational details

— Variability and non-deterministic behavior

— Generalizability of results

— Reproducibility

e |t is not at all obvious how to perform a rigorous analysis in the presence
of so many factors.

e Practical considerations prevent complete testing.

ISE 407 Leture 10 5

Assessing “Effectiveness”

e What do we mean by “effectiveness”?

— For the time being, we focus on sequential algorithms.
— We'll define effectiveness of sequential algorithms in terms of efficiency
of resource consumption.

e What resources are we talking about?

— “Time”"

— Memory/Space

— Number of cores (in the parallel case)
— Power

— Operations
- 77

e In the case of parallel algorithms, we consider tradeoffs between the
resources (we'll discuss this in the next lecture).

ISE 407 Leture 10 6

Formal Definition

Definition 1. A resource is an auxiliary input, some measurable quantity
of which is required to produce the result of a computation.

Definition 2. A measure of efficiency for a given benchmark computation
Is the amount of one chosen resource that is required to perform that
computation, with the level of all other resources fixed.

e Note that we measure efficiency with respect to some particular
benchmark computation.

e The output of this computation should be well-defined in order for
comparison to be sensible.

e This kind of analysis is most appropriate for “exact” algorithms.

ISE 407 Leture 10 7

Empirical Resource Consumption Distribution Functions

e Empirical analysis can be viewed as a method of estimate the probability
distribution of resource consumption of an algorithm.

— Resource consumption is just an abstraction of the concept of “running
time” that we discussed earlier.
— Resource consumption function can be thought of as a random variable

over the space of instances.
— In contrast to the theoretical running time function, we may consider
the resource consumption over a set of instances of a fixed size.

e The analysis is usually done over a‘class” of instances.

e For this to be a well-defined concept, we need to be able to sample from
the distribution of instances in the class.

e In practice, we may not know either the true distribution.
e We typically assume that the distribution on the instances is uniform.

e There are many unknowns and we need to customize our testing based
on the situation.

ISE 407 Leture 10

Empirical CDF Example

1.00

—— QuickSort
InsertionSort
~— MergeSort

0.00

0.05 0.10 0.15 0.20 0.25

Figure 1: Empirical CDF for 10K samples of sorting algorithms

e Each sample here is a different randomly generated list.
e Note that different random samples were used in generating each eCDF.

e One could argue that we should use the same sample.

ISE 407 Leture 10 9

Measuring Time

e |n the remainder of the lecture, we focus primarily on time as the resource
of interest.

e [here are three relevant measures of time we can measure.

— User time measures the amount of time (number of cycles taken by a
process in “user mode.”

— System time is the time taken by the kernel executing on behalf of the
process.

— Wallclock time is the total “real” time taken to execute the process.

e Generally speaking, user time is the most relevant, though it ignores
some important operations (I1/0, etc.).

e Wallclock time should be used cautiously/sparingly, but may be necessary
for assessment of parallel codes,

10

ISE 407 Leture 10
Dealing with Stochasticity

e Measurement of empirical running times is noisy in general for multiple

reasons.
e For the noise that occurs in performing deterministic experiments,

replications help smooth out the results.
e Here is the same CDF as before, but with 10 replications of each sample.

1.00 -
4
l"

050 J

0.25 |
—— QuickSort
InsertionSort

—— MergeSort

J
0.4 05 06

0.00
0.2 03

Figure 2: Empirical CDF for 10K samples with 10 replications per sample

ISE 407 Leture 10 11

Test Set

e The test set you use largely determines the validity of your results.

e The instances must be chosen carefully in order to allow proper
conclusions to be drawn.

e Generally speaking, the test set should be a “representative sample” of
the overall class of instances.

e T his is difficult to achieve and it is even difficult to know whether we
have achieved it or not.

e \We may need to pay close attention to their size, inherent difficulty, and
other important structural properties.

e This is especially important if we are trying to distinguish among multiple
algorithms.

e Example: Sorting

ISE 407 Leture 10 12

Example: Insertion Sort

def insertion_sort(1l):
for i in range(1, len(l)):

save = 1[i]

j=i

while j > 0 and 1[j - 1] > save:
1031 = 1[j - 1]
j-=1

1[j] = save

e As an example of the importance of test sets, consider insertion sort.

e What is the maximum number of steps the insertion sort algorithm can
take?

e On what kinds of inputs is the worst-case behavior observed?
e What is the “best” case?
e On what kinds of inputs is this best case observed?

e Do you think that empirical analysis based on random instance generation
will tell us what we really want to know about this algorithm?

ISE 407 Leture 10

13

Results with Pre-sorted Input

100 (f
075t
050 f
025}
—— QuickSort
~—— InsertionSort
J } ——— MergeSort
0.00 t ' ! . .)
0.00 0.01 0.02 0.03 0.04 0.05

Figure 3: Empirical CDF for already sorted input

ISE 407 Leture 10

14

(0.00 }

Results with Reverse Sorted Input

—— QuickSort
—— MergeSort
—— InsertionSort

01 0.2 03

Figure 4: Empirical CDF for already sorted input

04

ISE 407 Leture 10 15

Example: Navigating a Maze

e In this example, we show the empirical distribution function of number
of steps needed to navigate a random maze.

e Note the strong dependence on density.

000000000000000000000000000000000

Figure 5: Size 100, Density 20% Figure 6: Size 100, Density 50%

Figure 7: Size 100, Density 80%

ISE 407 Leture 10 16

Randomized Instance Generation

e In general, instances used for testing should be representative of what
will be encountered when the algorithm is deployed.

e A test set drawn randomly from a distribution representing the true
distribution of instances in the “real world” is ideal.

e However, the “real-world” distribution of instances is rarely known with
any certainty.

e |In some cases, it is possible to devise random generators for instances
that produce good test cases.

e In most cases, randomized instances are not appropriate because they
don't represent the true nature of instances arising in practice.

ISE 407 Leture 10 17

Performing Experiments

e |n addition to choosing the test set and the measure of efficiency, we
must also determine other experimental parameters.

— Resource limits (time, memory, etc.)
— Parameter settings
— Replications

e All efforts should be made to eliminate confounding sources of variability
by running experiments in a “sandbox” if possible (e.g., using cset).

e Roughly speaking, there are three steps in the process.

— Construct a test set.

— Measure resource consumption for each single instance with each
algorithm individually (with appropriate replications).

— Construct an empirical probability distribution from the data.

— Compare the distribution and draw conclusions.

ISE 407 Leture 10 18

lllustrating Concepts: BenchmarkTools in Julia

e Julia has a package specifically designed for doing rigorous benchmarking.

julia> t = @benchmark sum(rand(1000))
BenchmarkTools.Trial:

memory estimate: 7.94 KiB

allocs estimate: 1

minimum time: 1.210 ps (0.00% GC)
median time: 1.500 ps (0.00% GC)
mean time: 3.319 ns (8.28% GC)
maximum time: 248.330 ps (93.73% GC)
samples: 10000

evals/sample: 10

e Here, we are apparently measuring the time to sum 100 random numbers.

e Notice, however, that we are also including the time to do the memory
allocation and generate the list.

e T[he garbage collector is also running in some iterations.

ISE 407 Leture 10 19

Benchmarking Parameters

e Parameters

— samples: Number of experiments, number of instances to run.

— evals: Number of times to replicate each experiment.

— seconds: Total time budget for benchmarking.

— overhead: Estimate of looping overhead to be deducted from time.
— gctrial: Whether to do garbage collection before each trial.

— gcsample: Whether to do garbage collection before each sample.

— time_tolerance: Tolerance for delcaring a regression.

— memory_tolerance: Tolerance for delcaring a regression.

e Overall process

— Define the benchmark (@benchmarkable): Generate code from macro.

— Tune parameters (tune! ()): Mainly to determine evals by measuring
time for one sample—shorter time means more evals..

— Run experiments (run): Do warm-up and then sample.

e In most case, you should set all parameters yourself.

e Beware that 5 seconds is the default time budget!

ISE 407 Leture 10 20

Garbage Collection and Interpolation

julia> = @benchmark sum(rand(1000)) gcsample=true
BenchmarkTools.Trial:

memory estimate: 7.94 KiB

allocs estimate: 1

minimum time: 2.700 ps (0.00% GC)
median time: 3.056 ps (0.00% GC)
mean time: 3.596 ps (0.00% GC)
maximum time: 7.600 ps (0.00% GC)
samples: 20
evals/sample: 9

Setting gcsample=true seems to increase the running time for some reason.

julia> @benchmark sum($(rand(1000)))
BenchmarkTools.Trial:

memory estimate: O bytes

allocs estimate: O

minimum time: 70.270 ns (0.00% GC)
median time: 70.686 ns (0.00% GC)
mean time: 77.540 ns (0.00% GC)
maximum time: 205.821 ns (0.00% GC)
samples: 10000

evals/sample: 962

The reason running times are so fast is because with interpolation, the sum
is just a constant and the compiler optimizes away the whole computation.

ISE 407 Leture 10 21

Setup and Teardown

julia> @benchmark sort(x) setup=(x = rand(1000)) evals=10 samples=10000
BenchmarkTools.Trial:

memory estimate: 7.94 KiB

allocs estimate: 1

minimum time: 22.810 ps (0.00% GC)
median time: 25.910 ps (0.00% GC)
mean time: 27.594 ps (0.60% GC)
maximum time: 161.820 ps (66.25% GC)
samples: 10000

evals/sample: 10

julia> q = @benchmark sort(x, alg=QuickSort) evals=10 samples=10000 setup=(x = rand(1000));
@benchmark sort(x, alg=InsertionSort) evals=10 samples=10000 setup=(x = rand(1000));
julia> m = @benchmark sort(x, alg=MergeSort) evals=10 samples=10000 setup=(x = rand(1000));
julia> pc(n) = (1:length(n))./length(n);

julia> plot(i.times*le-6, pc(i.times), 1=2, label="InsertionSort")

julia> plot!(q.times*1le-6, pc(q.times), 1=2, label="QuickSort")

julia> plot!(m.times*1le-6, pc(m.times), 1=2, label="MergeSort")

julia> i

e Note that setup and teardown are only done once per sample, not once
per evaluation!

e This means that we can't do an in-place sort if evals > 1 because the
sorted vector would then be incorrectly used in later replications.

e To avoid this, we would need to make copies of the data in each
replication, which would also take time.

ISE 407 Leture 10

22

Empirical CDF Example

1.00 f T
075
050 f
025
—— QuickSort
—— InsertionSort
J —— MergeSort
0.00 ¢ _ ' i { . .
0.1 0.2 03 04 05 06

Figure 8: Empirical CDF for 10K replications of sorting algorithms

ISE 407 Leture 10 23

Ensuring Replicability

e In the results on the previous slide, we used independent random smaples
to estimates the CDFs for each sorting algorithm.

e One could argue that this is incorrect because we are using a different
test set for each algorithm.

e \We are also not seeding the random number generator so the test set
would be different if we repeat the experiment.

e For large samples like these, these effects probably don't matter, but in
general, they might.

e For some of the visualizations we'll see later, we must use the same test
set for all algorithms.

julia> using Random
julia> rng = MersenneTwister(12345);
julia> q = @benchmark sort(x, alg=QuickSort) evals=10 samples=10000 setup=(x=rand(rng, 1000));

ISE 407 Leture 10 24

Comparing Distributions

e Given (empirical) probability distribution functions for each algorithm,
how do we decide which algorithm is “better”?

e There are methods of comparing statistical distributions, but we will not
cover those methods here.

e Which algorithm is “best” depends on the practical usage and it is usually
best to present the data and let the reader draw their own conclusions.

e One common approach to presenting the data is simply to present big
tables of numbers and let the reader interpret them <= don't do this!

e With the ability to interactively manipulate the data in order to draw
conclusions (could be coming!), presenting raw data could be a viable
alternative at some point in the future.

e Generally speaking, however, we should help the user with the task of
assimilating the data.

o We'll use the two most common methods of doing this: summarization
and visualization.

ISE 407 Leture 10 25

Empirical Resource Consumption Functions

e Empirical resource consumption functions plot instance size versus
empirical resource (e.g., running time or operations count) consumption).

e Data points represent a summary measure across a set of instances of
the same size.

e |t may be necessary to break out the instances into groups with different
properties, such as density in the case of matrices or graphs.

e |f the variation within instances of the same size is important, then we
must either

— Make a 3D empirical distribution in which in put size is a parameter.
— Produce different plots for different input sizes.

ISE 407 Leture 10 26

Summarization

e To compare results across multiple dimensions, as described in the
previous slide, we must use a summary statistic.

e For example, we may want to plot a traditional empirical running time
function with results for each input size summarized.

e \We may also simply want to be able to make a comparison based on a
single statistic.

— Arithmetic mean < can be biased by (large) outliers.
— Geometric mean < can be biased by (small) outliers.
— Variance < can be used to understand how variability in the results.

e The shifted geometric mean attempts to summarize without introducing
(too much) bias due to very large or very small inputs.

Definition 3. Given a set of values N := {x1,x5,...,x,} and a shift
value s, the shifted geometric mean is given by

n n

SGIN) = (][+s9) | —s
k=1

ISE 407 Leture 10 27

Example: Empirical Running Time Functions

e In the below empirical running time function, the result for each input
size is the mean of 10K samples.

e The curve is obtained from samples at 10 different list sizes.

Comparing Sorting Algorithms

05 F
MergeSort
QuickSort
04+
E 03
=
(@)
£
c
S 02}
o
01F
00 C i L i L i
0 1000 2000 3000 4000

List Size

Figure 9: Empirical CDF for 10K replications of sorting algorithms

ISE 407 Leture 10 28

Proxies

e In practice, we may not always be able to directly measure the
consumption of the resource we care about, so we use various proxies.

e We must be careful to justify that these proxies make sense.
e Typical measures in practice

— Representative operation counts
— Measures specific to a problem class (iteration counts, etc.)

ISE 407 Leture 10 29

Representative Operation Counts

e |n some cases, we may want to count operations, rather than time.

e This eliminates some of the irrelevant factors that influence algorithmic
performance.

e Using operation counts smooth some of the rough edges introduced by
empirical analysis and provide a clean way of doing such analysis.

e What operations should we count?

— Profilers can count function calls and executions of individual lines of
code to identify bottlenecks.

— We may know a priori what operations we want to measure (example:
comparisons and swaps in sorting).

ISE 407 Leture 10 30

Atomic Operations

e |n the case of particular algorithm classes, we sometimes consider higher-
level operations to be atomic.

e For example, in branch and bound, we may consider

— Number of total iterations in solving bounding problems.
— Number of bounding problems solved.
— Number of branch-and-bound nodes.

e In all cases, we must justify that the operations being counted really are
a good proxy for resource usage (i.e., is in the “spirit” of a measure of
efficiency).

e The goal is to obtain sensible results and to make a “fair’ comparison.

ISE 407 Leture 10 31

Example: Empirical Analysis of Insertion Sort

Generating random inputs of different sizes, we get the following empirical
running time function.

0.8

0.7

0.6

05

0.4

0.3F

0.2

0.1

0.0

0 500 1000 1500 2000 2500 3000

Figure 10: Running time of insertion sort on randomly generated lists

What is your guess as to what function this is?

ISE 407 Leture 10 32

Operation Counts

e What are the basic operations in a sorting algorithm?

— Compare
— Swap

e Most sorting algorithms consist of repetitions of these two basic
operations.

e The number of these operations performed is a proxy for the empirical
running time that is independent of hardware.

ISE 407 Leture 10

33

Plotting Operation Counts

5000000 T T

4000000

3000000

2000000

1000000 |

0 500 1000

Figure 11: Operation counts for

1500 2000 2500 3000

insertion sort on randomly generated lists

ISE 407 Leture 10

34

Obtaining Operation Counts

e One way to obtain operation counts is using a profiler.

e A profiler counts function calls and all reports the amount of time spent
in each function in your program.

>>> cProfile.run('insertion_sort_count(alList)', 'cprof.out')
>>> p = pstats.Stats('cprof.out')
>>> p.sort_stats('cumulative') .print_stats(10)

ncalls
1
251040
252027
999

tottime
1.011
0.507
0.393
0.002

percall
1.011
0.000
0.000
0.000

cumtime
3.815
0.507
0.393
0.002

percall
3.815
0.000
0.000
0.000

function
insertion_sort
shift_right
compare

assign

ISE 407 Leture 10 35

Example: Naive Sorting Algorithms

7000000 : 2.5 T T
— bubble_sort_count — bubble_sort
goooooo L | — '.se\ectllon_sort_count | — 'lselectllon_sort
—— insertion_sort_count 20l —— insertion_sort

5000000
a (]
E £ 15¢
= 4000000 - =
=]]
© ©
E— 3000000 é—
S I £ 1.0}
(=] =]
&) ()

2000000

05Ff
1000000
0 1 L . . . 0.0 . L . .
0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000
Input n Input n

Figure 12: Empirical operation counts Figure 13: Empirical running times

ISE 407 Leture 10

36

120000

100000 -

80000

Computation time

40000 |

20000 |

Example: Optimal Sorting Algorithms

— quick_sort_count
— heap_sort_count

—— merge_sort_count

60000 |

500 1000

1500 2000 2500 3000
Input n

Computation time

0.040

0.035+

0.030}

o
o
N
=]

0.020 |

o
=]
=
w

0.010
0.005

0.000
0

— quick_sort
— heap_sort

—— merge_sort

1000 1500

Input n

2000 2500 3000

Figure 14: Empirical operation counts Figure 15: Empirical running times

ISE 407 Leture 10 37

Some Takeaways

e Depending on the language there may be confounding factors that are
difficult to account for.

e In Julia, for example, running times can vary hugely due to garbage
collection, loading of modules initial compilation, etc.

e It is also easy to include computations in your analysis that are not
actually relevant (generation of random data, etc.)

e |t is important to control for all of this to the extent possible.

e This is what Julia’s BenchmarkTools attempts to help you to do in an
automated way, but it is also important to do this in other settings.

