
Computational Optimization
ISE 407

Lecture 10

Dr. Ted Ralphs



ISE 407 Leture 10 1

Reading for This Lecture

• Assessing the Effectiveness of (Parallel) Branch-and-Bound Algorithms

• A Theoretician’s Guide to the Experimental Analysis of Algorithms

• Statistical Analysis of Computational Tests of Algorithms and Heuristics

1



ISE 407 Leture 10 2

Empirical Analysis of Algorithms

• In practice, we will often need to resort to empirical rather than theoretical
analysis to compare algorithms.

– We may want to know something about effectiveness of the algorithm
“on average” for real instances.

– Our model of computation may not capture important effects of the
hardware architecture that arise in practice.

– There may be implementational details that affect constant factors
and are not captured by asymptotic analysis.

• For this purpose, we need a methodology for comparing algorithms based
on real-world performance.

2



ISE 407 Leture 10 3

Exact Versus Heuristic Algorithms

• In optimization, an “exact” algorithm is one that outputs a result
(typically a solution) and a proof (i.e., a certificate).

• The proof is usually given in terms of primal and dual solutions/bounds.

• Because of numerical issues, it is usually not feasible to get “exact”
solutions.

• Nevertheless, we can define termination criteria in terms of the “primal-
dual gap” or some other criteria related to accuracy.

• The important thing is that the criteria is well-defined and independent
of the algorithm.

• The methodology we describe is focused on exact algorithms having such
well-defined termination criteria.

• This ensures comparability of results.

• Comparison of heuristic algorithms is much different and we won’t discuss
that.

3



ISE 407 Leture 10 4

Issues to Consider

• Empirical analysis introduces many more factors that need to be
controlled for in some way.

– Test platform (hardware, language, compiler)
– Measures of effectiveness (what to compare)
– Benchmark test set (what instances to test on)
– Algorithmic parameters
– Implementational details
– Variability and non-deterministic behavior
– Generalizability of results
– Reproducibility

• It is not at all obvious how to perform a rigorous analysis in the presence
of so many factors.

• Practical considerations prevent complete testing.

4



ISE 407 Leture 10 5

Assessing “Effectiveness”

• What do we mean by “effectiveness”?

– For the time being, we focus on sequential algorithms.
– We’ll define effectiveness of sequential algorithms in terms of efficiency

of resource consumption.

• What resources are we talking about?

– “Time”
– Memory/Space
– Number of cores (in the parallel case)
– Power
– Operations
– ??

• In the case of parallel algorithms, we consider tradeoffs between the
resources (we’ll discuss this in the next lecture).

5



ISE 407 Leture 10 6

Formal Definition

Definition 1. A resource is an auxiliary input, some measurable quantity
of which is required to produce the result of a computation.

Definition 2. A measure of efficiency for a given benchmark computation
is the amount of one chosen resource that is required to perform that
computation, with the level of all other resources fixed.

• Note that we measure efficiency with respect to some particular
benchmark computation.

• The output of this computation should be well-defined in order for
comparison to be sensible.

• This kind of analysis is most appropriate for “exact” algorithms.

6



ISE 407 Leture 10 7

Empirical Resource Consumption Distribution Functions

• Empirical analysis can be viewed as a method of estimate the probability
distribution of resource consumption of an algorithm.

– Resource consumption is just an abstraction of the concept of “running
time” that we discussed earlier.

– Resource consumption function can be thought of as a random variable
over the space of instances.

– In contrast to the theoretical running time function, we may consider
the resource consumption over a set of instances of a fixed size.

• The analysis is usually done over a“class” of instances.

• For this to be a well-defined concept, we need to be able to sample from
the distribution of instances in the class.

• In practice, we may not know either the true distribution.

• We typically assume that the distribution on the instances is uniform.

• There are many unknowns and we need to customize our testing based
on the situation.

7



ISE 407 Leture 10 8

Empirical CDF Example

Figure 1: Empirical CDF for 10K samples of sorting algorithms

• Each sample here is a different randomly generated list.

• Note that different random samples were used in generating each eCDF.

• One could argue that we should use the same sample.

8



ISE 407 Leture 10 9

Measuring Time

• In the remainder of the lecture, we focus primarily on time as the resource
of interest.

• There are three relevant measures of time we can measure.

– User time measures the amount of time (number of cycles taken by a
process in “user mode.”

– System time is the time taken by the kernel executing on behalf of the
process.

– Wallclock time is the total “real” time taken to execute the process.

• Generally speaking, user time is the most relevant, though it ignores
some important operations (I/O, etc.).

• Wallclock time should be used cautiously/sparingly, but may be necessary
for assessment of parallel codes,

9



ISE 407 Leture 10 10

Dealing with Stochasticity

• Measurement of empirical running times is noisy in general for multiple
reasons.

• For the noise that occurs in performing deterministic experiments,
replications help smooth out the results.

• Here is the same CDF as before, but with 10 replications of each sample.

Figure 2: Empirical CDF for 10K samples with 10 replications per sample

10



ISE 407 Leture 10 11

Test Set

• The test set you use largely determines the validity of your results.

• The instances must be chosen carefully in order to allow proper
conclusions to be drawn.

• Generally speaking, the test set should be a “representative sample” of
the overall class of instances.

• This is difficult to achieve and it is even difficult to know whether we
have achieved it or not.

• We may need to pay close attention to their size, inherent difficulty, and
other important structural properties.

• This is especially important if we are trying to distinguish among multiple
algorithms.

• Example: Sorting

11



ISE 407 Leture 10 12

Example: Insertion Sort

def insertion_sort(l):

for i in range(1, len(l)):

save = l[i]

j = i

while j > 0 and l[j - 1] > save:

l[j] = l[j - 1]

j -= 1

l[j] = save

• As an example of the importance of test sets, consider insertion sort.

• What is the maximum number of steps the insertion sort algorithm can
take?

• On what kinds of inputs is the worst-case behavior observed?

• What is the “best” case?

• On what kinds of inputs is this best case observed?

• Do you think that empirical analysis based on random instance generation
will tell us what we really want to know about this algorithm?

12



ISE 407 Leture 10 13

Results with Pre-sorted Input

Figure 3: Empirical CDF for already sorted input

13



ISE 407 Leture 10 14

Results with Reverse Sorted Input

Figure 4: Empirical CDF for already sorted input

14



ISE 407 Leture 10 15

Example: Navigating a Maze

• In this example, we show the empirical distribution function of number
of steps needed to navigate a random maze.

• Note the strong dependence on density.

Figure 5: Size 100, Density 20% Figure 6: Size 100, Density 50%

Figure 7: Size 100, Density 80%

15



ISE 407 Leture 10 16

Randomized Instance Generation

• In general, instances used for testing should be representative of what
will be encountered when the algorithm is deployed.

• A test set drawn randomly from a distribution representing the true
distribution of instances in the “real world” is ideal.

• However, the “real-world” distribution of instances is rarely known with
any certainty.

• In some cases, it is possible to devise random generators for instances
that produce good test cases.

• In most cases, randomized instances are not appropriate because they
don’t represent the true nature of instances arising in practice.

16



ISE 407 Leture 10 17

Performing Experiments

• In addition to choosing the test set and the measure of efficiency, we
must also determine other experimental parameters.

– Resource limits (time, memory, etc.)
– Parameter settings
– Replications

• All efforts should be made to eliminate confounding sources of variability
by running experiments in a “sandbox” if possible (e.g., using cset).

• Roughly speaking, there are three steps in the process.

– Construct a test set.
– Measure resource consumption for each single instance with each

algorithm individually (with appropriate replications).
– Construct an empirical probability distribution from the data.
– Compare the distribution and draw conclusions.

17



ISE 407 Leture 10 18

Illustrating Concepts: BenchmarkTools in Julia

• Julia has a package specifically designed for doing rigorous benchmarking.

julia> t = @benchmark sum(rand(1000))

BenchmarkTools.Trial:

memory estimate: 7.94 KiB

allocs estimate: 1

--------------

minimum time: 1.210 µs (0.00% GC)

median time: 1.500 µs (0.00% GC)

mean time: 3.319 µs (8.28% GC)

maximum time: 248.330 µs (93.73% GC)

--------------

samples: 10000

evals/sample: 10

• Here, we are apparently measuring the time to sum 100 random numbers.

• Notice, however, that we are also including the time to do the memory
allocation and generate the list.

• The garbage collector is also running in some iterations.

18



ISE 407 Leture 10 19

Benchmarking Parameters

• Parameters

– samples: Number of experiments, number of instances to run.
– evals: Number of times to replicate each experiment.
– seconds: Total time budget for benchmarking.
– overhead: Estimate of looping overhead to be deducted from time.
– gctrial: Whether to do garbage collection before each trial.
– gcsample: Whether to do garbage collection before each sample.
– time tolerance: Tolerance for delcaring a regression.
– memory tolerance: Tolerance for delcaring a regression.

• Overall process

– Define the benchmark (@benchmarkable): Generate code from macro.
– Tune parameters (tune!()): Mainly to determine evals by measuring

time for one sample—shorter time means more evals..
– Run experiments (run): Do warm-up and then sample.

• In most case, you should set all parameters yourself.

• Beware that 5 seconds is the default time budget!

19



ISE 407 Leture 10 20

Garbage Collection and Interpolation

julia> = @benchmark sum(rand(1000)) gcsample=true

BenchmarkTools.Trial:

memory estimate: 7.94 KiB

allocs estimate: 1

--------------

minimum time: 2.700 µs (0.00% GC)

median time: 3.056 µs (0.00% GC)

mean time: 3.596 µs (0.00% GC)

maximum time: 7.600 µs (0.00% GC)

--------------

samples: 20

evals/sample: 9

Setting gcsample=true seems to increase the running time for some reason.

julia> @benchmark sum($(rand(1000)))

BenchmarkTools.Trial:

memory estimate: 0 bytes

allocs estimate: 0

--------------

minimum time: 70.270 ns (0.00% GC)

median time: 70.686 ns (0.00% GC)

mean time: 77.540 ns (0.00% GC)

maximum time: 205.821 ns (0.00% GC)

--------------

samples: 10000

evals/sample: 962

The reason running times are so fast is because with interpolation, the sum
is just a constant and the compiler optimizes away the whole computation.

20



ISE 407 Leture 10 21

Setup and Teardown

julia> @benchmark sort(x) setup=(x = rand(1000)) evals=10 samples=10000

BenchmarkTools.Trial:

memory estimate: 7.94 KiB

allocs estimate: 1

--------------

minimum time: 22.810 µs (0.00% GC)

median time: 25.910 µs (0.00% GC)

mean time: 27.594 µs (0.60% GC)

maximum time: 161.820 µs (66.25% GC)

--------------

samples: 10000

evals/sample: 10

julia> q = @benchmark sort(x, alg=QuickSort) evals=10 samples=10000 setup=(x = rand(1000));

julia> i = @benchmark sort(x, alg=InsertionSort) evals=10 samples=10000 setup=(x = rand(1000));

julia> m = @benchmark sort(x, alg=MergeSort) evals=10 samples=10000 setup=(x = rand(1000));

julia> pc(n) = (1:length(n))./length(n);

julia> plot(i.times*1e-6, pc(i.times), l=2, label="InsertionSort")

julia> plot!(q.times*1e-6, pc(q.times), l=2, label="QuickSort")

julia> plot!(m.times*1e-6, pc(m.times), l=2, label="MergeSort")

• Note that setup and teardown are only done once per sample, not once
per evaluation!

• This means that we can’t do an in-place sort if evals > 1 because the
sorted vector would then be incorrectly used in later replications.

• To avoid this, we would need to make copies of the data in each
replication, which would also take time.

21



ISE 407 Leture 10 22

Empirical CDF Example

Figure 8: Empirical CDF for 10K replications of sorting algorithms

22



ISE 407 Leture 10 23

Ensuring Replicability

• In the results on the previous slide, we used independent random smaples
to estimates the CDFs for each sorting algorithm.

• One could argue that this is incorrect because we are using a different
test set for each algorithm.

• We are also not seeding the random number generator so the test set
would be different if we repeat the experiment.

• For large samples like these, these effects probably don’t matter, but in
general, they might.

• For some of the visualizations we’ll see later, we must use the same test
set for all algorithms.

julia> using Random

julia> rng = MersenneTwister(12345);

julia> q = @benchmark sort(x, alg=QuickSort) evals=10 samples=10000 setup=(x=rand(rng, 1000));

23



ISE 407 Leture 10 24

Comparing Distributions

• Given (empirical) probability distribution functions for each algorithm,
how do we decide which algorithm is “better”?

• There are methods of comparing statistical distributions, but we will not
cover those methods here.

• Which algorithm is “best” depends on the practical usage and it is usually
best to present the data and let the reader draw their own conclusions.

• One common approach to presenting the data is simply to present big
tables of numbers and let the reader interpret them ⇐ don’t do this!

• With the ability to interactively manipulate the data in order to draw
conclusions (could be coming!), presenting raw data could be a viable
alternative at some point in the future.

• Generally speaking, however, we should help the user with the task of
assimilating the data.

• We’ll use the two most common methods of doing this: summarization
and visualization.

24



ISE 407 Leture 10 25

Empirical Resource Consumption Functions

• Empirical resource consumption functions plot instance size versus
empirical resource (e.g., running time or operations count) consumption).

• Data points represent a summary measure across a set of instances of
the same size.

• It may be necessary to break out the instances into groups with different
properties, such as density in the case of matrices or graphs.

• If the variation within instances of the same size is important, then we
must either

– Make a 3D empirical distribution in which in put size is a parameter.
– Produce different plots for different input sizes.

25



ISE 407 Leture 10 26

Summarization

• To compare results across multiple dimensions, as described in the
previous slide, we must use a summary statistic.

• For example, we may want to plot a traditional empirical running time
function with results for each input size summarized.

• We may also simply want to be able to make a comparison based on a
single statistic.

– Arithmetic mean ⇐ can be biased by (large) outliers.
– Geometric mean ⇐ can be biased by (small) outliers.
– Variance ⇐ can be used to understand how variability in the results.

• The shifted geometric mean attempts to summarize without introducing
(too much) bias due to very large or very small inputs.

Definition 3. Given a set of values N := {x1, x2, . . . , xn} and a shift
value s, the shifted geometric mean is given by

SG(N) =

(
n∏

k=1

(xk + s)

)1
n

− s.

26



ISE 407 Leture 10 27

Example: Empirical Running Time Functions

• In the below empirical running time function, the result for each input
size is the mean of 10K samples.

• The curve is obtained from samples at 10 different list sizes.

Figure 9: Empirical CDF for 10K replications of sorting algorithms

27



ISE 407 Leture 10 28

Proxies

• In practice, we may not always be able to directly measure the
consumption of the resource we care about, so we use various proxies.

• We must be careful to justify that these proxies make sense.

• Typical measures in practice

– Representative operation counts
– Measures specific to a problem class (iteration counts, etc.)

28



ISE 407 Leture 10 29

Representative Operation Counts

• In some cases, we may want to count operations, rather than time.

• This eliminates some of the irrelevant factors that influence algorithmic
performance.

• Using operation counts smooth some of the rough edges introduced by
empirical analysis and provide a clean way of doing such analysis.

• What operations should we count?

– Profilers can count function calls and executions of individual lines of
code to identify bottlenecks.

– We may know a priori what operations we want to measure (example:
comparisons and swaps in sorting).

29



ISE 407 Leture 10 30

Atomic Operations

• In the case of particular algorithm classes, we sometimes consider higher-
level operations to be atomic.

• For example, in branch and bound, we may consider

– Number of total iterations in solving bounding problems.
– Number of bounding problems solved.
– Number of branch-and-bound nodes.

• In all cases, we must justify that the operations being counted really are
a good proxy for resource usage (i.e., is in the “spirit” of a measure of
efficiency).

• The goal is to obtain sensible results and to make a “fair” comparison.

30



ISE 407 Leture 10 31

Example: Empirical Analysis of Insertion Sort

Generating random inputs of different sizes, we get the following empirical
running time function.

Figure 10: Running time of insertion sort on randomly generated lists

What is your guess as to what function this is?

31



ISE 407 Leture 10 32

Operation Counts

• What are the basic operations in a sorting algorithm?

– Compare
– Swap

• Most sorting algorithms consist of repetitions of these two basic
operations.

• The number of these operations performed is a proxy for the empirical
running time that is independent of hardware.

32



ISE 407 Leture 10 33

Plotting Operation Counts

Figure 11: Operation counts for insertion sort on randomly generated lists

33



ISE 407 Leture 10 34

Obtaining Operation Counts

• One way to obtain operation counts is using a profiler.

• A profiler counts function calls and all reports the amount of time spent
in each function in your program.

>>> cProfile.run('insertion_sort_count(aList)', 'cprof.out')
>>> p = pstats.Stats('cprof.out')
>>> p.sort_stats('cumulative').print_stats(10)

ncalls tottime percall cumtime percall function

1 1.011 1.011 3.815 3.815 insertion_sort

251040 0.507 0.000 0.507 0.000 shift_right

252027 0.393 0.000 0.393 0.000 compare

999 0.002 0.000 0.002 0.000 assign

34



ISE 407 Leture 10 35

Example: Naive Sorting Algorithms

Figure 12: Empirical operation counts Figure 13: Empirical running times

35



ISE 407 Leture 10 36

Example: Optimal Sorting Algorithms

Figure 14: Empirical operation counts Figure 15: Empirical running times

36



ISE 407 Leture 10 37

Some Takeaways

• Depending on the language there may be confounding factors that are
difficult to account for.

• In Julia, for example, running times can vary hugely due to garbage
collection, loading of modules initial compilation, etc.

• It is also easy to include computations in your analysis that are not
actually relevant (generation of random data, etc.)

• It is important to control for all of this to the extent possible.

• This is what Julia’s BenchmarkTools attempts to help you to do in an
automated way, but it is also important to do this in other settings.

37


