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Reading for This Lecture

• Assessing the Effectiveness of (Parallel) Branch-and-Bound Algorithms

• A Theoretician’s Guide to the Experimental Analysis of Algorithms

• Statistical Analysis of Computational Tests of Algorithms and Heuristics
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Empirical Analysis of Algorithms

• In practice, we will often need to resort to empirical rather than theoretical
analysis to compare algorithms.

– We may want to know something about effectiveness of the algorithm
“on average” for real instances.

– Our model of computation may not capture important effects of the
hardware architecture that arise in practice.

– There may be implementational details that affect constant factors
and are not captured by asymptotic analysis.

• For this purpose, we need a methodology for comparing algorithms based
on real-world performance.
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Exact Versus Heuristic Algorithms

• In optimization, an “exact” algorithm is one that outputs a result
(typically a solution) and a proof (i.e., a certificate).

• The proof is usually given in terms of primal and dual solutions/bounds.

• Because of numerical issues, it is usually not feasible to get “exact”
solutions.

• Nevertheless, we can define termination criteria in terms of the “primal-
dual gap” or some other criteria related to accuracy.

• The important thing is that the criteria is well-defined and independent
of the algorithm.

• The methodology we describe is focused on exact algorithms having such
well-defined termination criteria.

• This ensures comparability of results.

• Comparison of heuristic algorithms is much different and we won’t discuss
that.
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Issues to Consider

• Empirical analysis introduces many more factors that need to be
controlled for in some way.

– Test platform (hardware, language, compiler)
– Measures of effectiveness (what to compare)
– Benchmark test set (what instances to test on)
– Algorithmic parameters
– Implementational details
– Variability and non-deterministic behavior
– Generalizability of results
– Reproducibility

• It is not at all obvious how to perform a rigorous analysis in the presence
of so many factors.

• Practical considerations prevent complete testing.
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Assessing “Effectiveness”

• What do we mean by “effectiveness”?

– For the time being, we focus on sequential algorithms.
– We’ll define effectiveness of sequential algorithms in terms of efficiency

of resource consumption.

• What resources are we talking about?

– “Time”
– Memory/Space
– Number of cores (in the parallel case)
– Power
– Operations
– ??

• In the case of parallel algorithms, we consider tradeoffs between the
resources (we’ll discuss this in the next lecture).
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Formal Definition

Definition 1. A resource is an auxiliary input, some measurable quantity
of which is required to produce the result of a computation.

Definition 2. A measure of efficiency for a given benchmark computation
is the amount of one chosen resource that is required to perform that
computation, with the level of all other resources fixed.

• Note that we measure efficiency with respect to some particular
benchmark computation.

• The output of this computation should be well-defined in order for
comparison to be sensible.

• This kind of analysis is most appropriate for “exact” algorithms.
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Empirical Resource Consumption Distribution Functions

• Empirical analysis can be viewed as a method of estimate the probability
distribution of resource consumption of an algorithm.

– Resource consumption is just an abstraction of the concept of “running
time” that we discussed earlier.

– Resource consumption function can be thought of as a random variable
over the space of instances.

– In contrast to the theoretical running time function, we may consider
the resource consumption over a set of instances of a fixed size.

• The analysis is usually done over a“class” of instances.

• For this to be a well-defined concept, we need to be able to sample from
the distribution of instances in the class.

• In practice, we may not know either the true distribution.

• We typically assume that the distribution on the instances is uniform.

• There are many unknowns and we need to customize our testing based
on the situation.
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Empirical CDF Example

Figure 1: Empirical CDF for 10K samples of sorting algorithms

• Each sample here is a different randomly generated list.

• Note that different random samples were used in generating each eCDF.

• One could argue that we should use the same sample.
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Measuring Time

• In the remainder of the lecture, we focus primarily on time as the resource
of interest.

• There are three relevant measures of time we can measure.

– User time measures the amount of time (number of cycles taken by a
process in “user mode.”

– System time is the time taken by the kernel executing on behalf of the
process.

– Wallclock time is the total “real” time taken to execute the process.

• Generally speaking, user time is the most relevant, though it ignores
some important operations (I/O, etc.).

• Wallclock time should be used cautiously/sparingly, but may be necessary
for assessment of parallel codes,
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Dealing with Stochasticity

• Measurement of empirical running times is noisy in general for multiple
reasons.

• For the noise that occurs in performing deterministic experiments,
replications help smooth out the results.

• Here is the same CDF as before, but with 10 replications of each sample.

Figure 2: Empirical CDF for 10K samples with 10 replications per sample

10



ISE 407 Leture 10 11

Test Set

• The test set you use largely determines the validity of your results.

• The instances must be chosen carefully in order to allow proper
conclusions to be drawn.

• Generally speaking, the test set should be a “representative sample” of
the overall class of instances.

• This is difficult to achieve and it is even difficult to know whether we
have achieved it or not.

• We may need to pay close attention to their size, inherent difficulty, and
other important structural properties.

• This is especially important if we are trying to distinguish among multiple
algorithms.

• Example: Sorting
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Example: Insertion Sort

def insertion_sort(l):

for i in range(1, len(l)):

save = l[i]

j = i

while j > 0 and l[j - 1] > save:

l[j] = l[j - 1]

j -= 1

l[j] = save

• As an example of the importance of test sets, consider insertion sort.

• What is the maximum number of steps the insertion sort algorithm can
take?

• On what kinds of inputs is the worst-case behavior observed?

• What is the “best” case?

• On what kinds of inputs is this best case observed?

• Do you think that empirical analysis based on random instance generation
will tell us what we really want to know about this algorithm?
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Results with Pre-sorted Input

Figure 3: Empirical CDF for already sorted input

13



ISE 407 Leture 10 14

Results with Reverse Sorted Input

Figure 4: Empirical CDF for already sorted input
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Example: Navigating a Maze

• In this example, we show the empirical distribution function of number
of steps needed to navigate a random maze.

• Note the strong dependence on density.

Figure 5: Size 100, Density 20% Figure 6: Size 100, Density 50%

Figure 7: Size 100, Density 80%
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Randomized Instance Generation

• In general, instances used for testing should be representative of what
will be encountered when the algorithm is deployed.

• A test set drawn randomly from a distribution representing the true
distribution of instances in the “real world” is ideal.

• However, the “real-world” distribution of instances is rarely known with
any certainty.

• In some cases, it is possible to devise random generators for instances
that produce good test cases.

• In most cases, randomized instances are not appropriate because they
don’t represent the true nature of instances arising in practice.

16



ISE 407 Leture 10 17

Performing Experiments

• In addition to choosing the test set and the measure of efficiency, we
must also determine other experimental parameters.

– Resource limits (time, memory, etc.)
– Parameter settings
– Replications

• All efforts should be made to eliminate confounding sources of variability
by running experiments in a “sandbox” if possible (e.g., using cset).

• Roughly speaking, there are three steps in the process.

– Construct a test set.
– Measure resource consumption for each single instance with each

algorithm individually (with appropriate replications).
– Construct an empirical probability distribution from the data.
– Compare the distribution and draw conclusions.
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Illustrating Concepts: BenchmarkTools in Julia

• Julia has a package specifically designed for doing rigorous benchmarking.

julia> t = @benchmark sum(rand(1000))

BenchmarkTools.Trial:

memory estimate: 7.94 KiB

allocs estimate: 1

--------------

minimum time: 1.210 µs (0.00% GC)

median time: 1.500 µs (0.00% GC)

mean time: 3.319 µs (8.28% GC)

maximum time: 248.330 µs (93.73% GC)

--------------

samples: 10000

evals/sample: 10

• Here, we are apparently measuring the time to sum 100 random numbers.

• Notice, however, that we are also including the time to do the memory
allocation and generate the list.

• The garbage collector is also running in some iterations.
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Benchmarking Parameters

• Parameters

– samples: Number of experiments, number of instances to run.
– evals: Number of times to replicate each experiment.
– seconds: Total time budget for benchmarking.
– overhead: Estimate of looping overhead to be deducted from time.
– gctrial: Whether to do garbage collection before each trial.
– gcsample: Whether to do garbage collection before each sample.
– time tolerance: Tolerance for delcaring a regression.
– memory tolerance: Tolerance for delcaring a regression.

• Overall process

– Define the benchmark (@benchmarkable): Generate code from macro.
– Tune parameters (tune!()): Mainly to determine evals by measuring

time for one sample—shorter time means more evals..
– Run experiments (run): Do warm-up and then sample.

• In most case, you should set all parameters yourself.

• Beware that 5 seconds is the default time budget!
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Garbage Collection and Interpolation

julia> = @benchmark sum(rand(1000)) gcsample=true

BenchmarkTools.Trial:

memory estimate: 7.94 KiB

allocs estimate: 1

--------------

minimum time: 2.700 µs (0.00% GC)

median time: 3.056 µs (0.00% GC)

mean time: 3.596 µs (0.00% GC)

maximum time: 7.600 µs (0.00% GC)

--------------

samples: 20

evals/sample: 9

Setting gcsample=true seems to increase the running time for some reason.

julia> @benchmark sum($(rand(1000)))

BenchmarkTools.Trial:

memory estimate: 0 bytes

allocs estimate: 0

--------------

minimum time: 70.270 ns (0.00% GC)

median time: 70.686 ns (0.00% GC)

mean time: 77.540 ns (0.00% GC)

maximum time: 205.821 ns (0.00% GC)

--------------

samples: 10000

evals/sample: 962

The reason running times are so fast is because with interpolation, the sum
is just a constant and the compiler optimizes away the whole computation.
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Setup and Teardown

julia> @benchmark sort(x) setup=(x = rand(1000)) evals=10 samples=10000

BenchmarkTools.Trial:

memory estimate: 7.94 KiB

allocs estimate: 1

--------------

minimum time: 22.810 µs (0.00% GC)

median time: 25.910 µs (0.00% GC)

mean time: 27.594 µs (0.60% GC)

maximum time: 161.820 µs (66.25% GC)

--------------

samples: 10000

evals/sample: 10

julia> q = @benchmark sort(x, alg=QuickSort) evals=10 samples=10000 setup=(x = rand(1000));

julia> i = @benchmark sort(x, alg=InsertionSort) evals=10 samples=10000 setup=(x = rand(1000));

julia> m = @benchmark sort(x, alg=MergeSort) evals=10 samples=10000 setup=(x = rand(1000));

julia> pc(n) = (1:length(n))./length(n);

julia> plot(i.times*1e-6, pc(i.times), l=2, label="InsertionSort")

julia> plot!(q.times*1e-6, pc(q.times), l=2, label="QuickSort")

julia> plot!(m.times*1e-6, pc(m.times), l=2, label="MergeSort")

• Note that setup and teardown are only done once per sample, not once
per evaluation!

• This means that we can’t do an in-place sort if evals > 1 because the
sorted vector would then be incorrectly used in later replications.

• To avoid this, we would need to make copies of the data in each
replication, which would also take time.
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Empirical CDF Example

Figure 8: Empirical CDF for 10K replications of sorting algorithms
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Ensuring Replicability

• In the results on the previous slide, we used independent random smaples
to estimates the CDFs for each sorting algorithm.

• One could argue that this is incorrect because we are using a different
test set for each algorithm.

• We are also not seeding the random number generator so the test set
would be different if we repeat the experiment.

• For large samples like these, these effects probably don’t matter, but in
general, they might.

• For some of the visualizations we’ll see later, we must use the same test
set for all algorithms.

julia> using Random

julia> rng = MersenneTwister(12345);

julia> q = @benchmark sort(x, alg=QuickSort) evals=10 samples=10000 setup=(x=rand(rng, 1000));
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Comparing Distributions

• Given (empirical) probability distribution functions for each algorithm,
how do we decide which algorithm is “better”?

• There are methods of comparing statistical distributions, but we will not
cover those methods here.

• Which algorithm is “best” depends on the practical usage and it is usually
best to present the data and let the reader draw their own conclusions.

• One common approach to presenting the data is simply to present big
tables of numbers and let the reader interpret them ⇐ don’t do this!

• With the ability to interactively manipulate the data in order to draw
conclusions (could be coming!), presenting raw data could be a viable
alternative at some point in the future.

• Generally speaking, however, we should help the user with the task of
assimilating the data.

• We’ll use the two most common methods of doing this: summarization
and visualization.

24



ISE 407 Leture 10 25

Empirical Resource Consumption Functions

• Empirical resource consumption functions plot instance size versus
empirical resource (e.g., running time or operations count) consumption).

• Data points represent a summary measure across a set of instances of
the same size.

• It may be necessary to break out the instances into groups with different
properties, such as density in the case of matrices or graphs.

• If the variation within instances of the same size is important, then we
must either

– Make a 3D empirical distribution in which in put size is a parameter.
– Produce different plots for different input sizes.
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Summarization

• To compare results across multiple dimensions, as described in the
previous slide, we must use a summary statistic.

• For example, we may want to plot a traditional empirical running time
function with results for each input size summarized.

• We may also simply want to be able to make a comparison based on a
single statistic.

– Arithmetic mean ⇐ can be biased by (large) outliers.
– Geometric mean ⇐ can be biased by (small) outliers.
– Variance ⇐ can be used to understand how variability in the results.

• The shifted geometric mean attempts to summarize without introducing
(too much) bias due to very large or very small inputs.

Definition 3. Given a set of values N := {x1, x2, . . . , xn} and a shift
value s, the shifted geometric mean is given by

SG(N) =

(
n∏

k=1

(xk + s)

)1
n

− s.
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Example: Empirical Running Time Functions

• In the below empirical running time function, the result for each input
size is the mean of 10K samples.

• The curve is obtained from samples at 10 different list sizes.

Figure 9: Empirical CDF for 10K replications of sorting algorithms
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Proxies

• In practice, we may not always be able to directly measure the
consumption of the resource we care about, so we use various proxies.

• We must be careful to justify that these proxies make sense.

• Typical measures in practice

– Representative operation counts
– Measures specific to a problem class (iteration counts, etc.)
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Representative Operation Counts

• In some cases, we may want to count operations, rather than time.

• This eliminates some of the irrelevant factors that influence algorithmic
performance.

• Using operation counts smooth some of the rough edges introduced by
empirical analysis and provide a clean way of doing such analysis.

• What operations should we count?

– Profilers can count function calls and executions of individual lines of
code to identify bottlenecks.

– We may know a priori what operations we want to measure (example:
comparisons and swaps in sorting).
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Atomic Operations

• In the case of particular algorithm classes, we sometimes consider higher-
level operations to be atomic.

• For example, in branch and bound, we may consider

– Number of total iterations in solving bounding problems.
– Number of bounding problems solved.
– Number of branch-and-bound nodes.

• In all cases, we must justify that the operations being counted really are
a good proxy for resource usage (i.e., is in the “spirit” of a measure of
efficiency).

• The goal is to obtain sensible results and to make a “fair” comparison.
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Example: Empirical Analysis of Insertion Sort

Generating random inputs of different sizes, we get the following empirical
running time function.

Figure 10: Running time of insertion sort on randomly generated lists

What is your guess as to what function this is?
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Operation Counts

• What are the basic operations in a sorting algorithm?

– Compare
– Swap

• Most sorting algorithms consist of repetitions of these two basic
operations.

• The number of these operations performed is a proxy for the empirical
running time that is independent of hardware.
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Plotting Operation Counts

Figure 11: Operation counts for insertion sort on randomly generated lists
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Obtaining Operation Counts

• One way to obtain operation counts is using a profiler.

• A profiler counts function calls and all reports the amount of time spent
in each function in your program.

>>> cProfile.run('insertion_sort_count(aList)', 'cprof.out')
>>> p = pstats.Stats('cprof.out')
>>> p.sort_stats('cumulative').print_stats(10)

ncalls tottime percall cumtime percall function

1 1.011 1.011 3.815 3.815 insertion_sort

251040 0.507 0.000 0.507 0.000 shift_right

252027 0.393 0.000 0.393 0.000 compare

999 0.002 0.000 0.002 0.000 assign
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Example: Naive Sorting Algorithms

Figure 12: Empirical operation counts Figure 13: Empirical running times
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Example: Optimal Sorting Algorithms

Figure 14: Empirical operation counts Figure 15: Empirical running times
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Some Takeaways

• Depending on the language there may be confounding factors that are
difficult to account for.

• In Julia, for example, running times can vary hugely due to garbage
collection, loading of modules initial compilation, etc.

• It is also easy to include computations in your analysis that are not
actually relevant (generation of random data, etc.)

• It is important to control for all of this to the extent possible.

• This is what Julia’s BenchmarkTools attempts to help you to do in an
automated way, but it is also important to do this in other settings.
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