
Computational Optimization
ISE 407

Lecture 1

Dr. Ted Ralphs

ISE 407 Lecture 1 1

Reading for this Lecture

• “How Computers Work,” R. Young

• “The Elements of Computing Systems,” N. Nisan and S. Schocken

• “Introduction to High Performance Computing”, V. Eijkhout, Chapter 1.

• “Introduction to High Performance Computing for Scientists and
Engineers,” G. Hager and G. Wellein, Chapter 1.

1

ISE 407 Lecture 1 2

What is a Computer System?

Figure 1: High Level View of a Computer System

2

ISE 407 Lecture 1 3

What Are Computational Methods?

• Computational methods are

– Algorithms based on logical procedures rooted in mathematics.
– Generally speaking, they are meant to be implemented on a computer.

• Such methods are usually stated initially in the high-level language of
mathematics.

• This class is about translating mathematics into abstract procedures,
then a programming language, and finally into machine instructions.

• The translation to a programming language must be done (primarily) by
a human, whereas later stages are performed automatically.

• Doing this well requires an understanding of how computer systems work.

3

ISE 407 Lecture 1 4

What Does a Computer System Really Do?

• A computer system

– connects to physical input sources (keyboard, sensors, and other
peripherals) to obtain data (instructions as well as raw input).

– based on the instructions, manipulates the raw input through a
sequence of logical operations to produce output.

– sends the output to peripherals (screen, printer) that convert the
output back into a physical source.

• Two basic components form the core of the system

– The central processing unit (CPU) performs the logical operations.
– The storage system connects to input and output devices and to the

CPU to provide the input to and receive the output from the CPU.

• Loosely speaking, the operating system provides a range of “services.”

• These allow human programmers and users to interact with and control
the computer in a more natural fashion.

• Naturally, this is all somewhat over-simplified.

4

ISE 407 Lecture 1 5

Hierarchy of Abstractions

Source: Nisan and Schocken

5

ISE 407 Lecture 1 6

Boolean Logic

• The basic computational unit of a computer is the logic gate.

• An electronic version of such a gate can be built a small number (between
2 and 5) transistors.

• Starting from basic logic gates, it is possible to build chips that perform
ever more sophisticated calculations.

• Underlying all of this computation is simple Boolean logic.

• Basic logic gates

– AND
– OR
– NOT

6

ISE 407 Lecture 1 7

Basic Logic Gates

Source: https:/en.wikipedia.org/wiki/Logic_gate

7

ISE 407 Lecture 1 8

Composite Gates

Source: https://en.wikipedia.org/wiki/Logic_gate

8

ISE 407 Lecture 1 9

Boolean Arithmetic

• From basic logic gates, we can straightforwardly build chips that do
arithmetic.

• The addition of two binary numbers can be reduced to sequences of
additions of three bits (the third bit is the carry).

• Most other arithmetic operations can be reduced to sequences of
additions.

• Thus, from these basic elements, we can build a chip that does most of
the things we want it to do.

9

ISE 407 Lecture 1 10

CPU

• Modern CPUs combine billions of such logic gates in a complex physical
manifestation of these ideas.

• CPU stands for “central processing unit,” but what we call a CPU is
more like a “CPU chip.”

• The chip may have multiple “compute cores” for doing computations in
parallel.

• The CPU has other sub-parts, such as a control unit, arithmetic logic
unit, memory management unit, clock, etc.

10

ISE 407 Lecture 1 11

Basic CPU Architecture

Source: Hager and Wellein, Figure 1.2

11

ISE 407 Lecture 1 12

How a CPU Works

Watch this: https://www.youtube.com/watch?v=cNN_tTXABUA

12

ISE 407 Lecture 1 13

Basic Architecture of a Computer

Figure 2: Basic architecture of a modern computer

Basic elements include

• CPU (Central processing unit)

• RAM (Random access memory)

• Storage

• Peripherals

Source: http://lwn.net/Articles/250967/

13

ISE 407 Lecture 1 14

RAM

• RAM stands for random access memory (as opposed to older style
memory, like magnetic tape, that had to be accessed linearly).

• Typical “burst” communication rate is around 10 GB/s

• Size varies from 4-32 GB

• It is temporary memory

• It keeps data and instructions for CPU

14

ISE 407 Lecture 1 15

How RAM works

• Memory is divided into slots that
store a fixed number of bits.

• Each slot gets an address.

• To retrieve data, you must have
the address.

• We’ll see later that RAM is
supplemented by smaller, faster
blocks of memory called cache.

15

ISE 407 Lecture 1 16

Storage Hierarchy

• There is a large gap between processor speeds and memory speeds.

• It is possible to produce faster memory, but it’s expensive and takes
much more physical space.

• As a compromise, we add small fast memory, called cache, for storing
the most important data.

• This a crucial driver of performance and we’ll delve further into it in
Lecture 2.

Source: http://lwn.net/Articles/250967/

16

ISE 407 Lecture 1 17

Other Technologies: GPU

• GPUs are not new, but are now more general-purpose.

• They can be programmed in C (with some restrictions).

• Provide the ability to run blocks of many synchronized parallel threads
executing the same “kernel.”

• Blocks have access to small, fast shared memory and slow global memory.

• Amount of global memory per thread is much smaller than CPU.

17

ISE 407 Lecture 1 18

Other Technologies: FPGA

• Field-programmable gate arrays (FPGAs) are integrated circuits designed
to be configured by a customer or a designer after manufacturing.

• They essentially CPUs custom-designed for certain workloads.

18

ISE 407 Lecture 1 19

Other Technologies: Co-processors

• Xeon Phi is similar to a GPU, but with a more general instruction set.

• “Essentially a 60-core SMP chip where each core has a dedicated 512-bit
wide SSE (Streaming SIMD Extensions) vector unit” –Dr. Dobbs

• Got it?

19

ISE 407 Lecture 1 20

Machine Language

• The native language spoken by a computer is a sequence of 0s and 1s.

• These are divided into chunks that can be interpreted as instructions,
memory addresses, numbers, or other data units.

• The chip provides a basic set of instructions that it can understand.

• This is called machine language.

• It can be translated into a more human readable form known as assembly
language.

• In the early history of computing, all programming was done in assembly
language.

• This is the first of many layers that exist to translate human thought
into action by the computer.

20

ISE 407 Lecture 1 21

Simple Example

1 function f(x::Int)

2 x += 5

3 end

julia> @code_native debuginfo=:none f(10)

1 .text

2 leaq 5(%rdi), %rax

3 retq

4 nopw %cs:(%rax,%rax)

5 nop

The instruction set used here is the x86-64 instruction set that is most
commonly in use on modern computers.

21

ISE 407 Lecture 1 22

Registers

• The codes beginning with with % on the last slide are names for the
available registers.

• In the x86-64 architecture, the registers hold 64-bit, but the lower bits
can be used as 32-, 16-, or 8-bit registers.

• Certain registers play special roles, mainly by convention.

– %rax is used to store a function’s return value.
– %rsp is the stack pointer.
– %rdi, %rsi, %rdx, %rcx, %r8, and %r9 are the first six integer or

pointer arguments to a function.

22

ISE 407 Lecture 1 23

Registers

8-byte register Bytes 0-3 Bytes 0-1 Byte 0

%rax %eax %ax %al

%rcx %ecx %cx %cl

%rdx %edx %dx %dl

%rbx %ebx %bx %bl

%rsi %esi %si %sil

%rdi %edi %di %dil

%rsp %esp %sp %spl

%rbp %ebp %bp %bpl

%r8 %r8d %r8w %r8b

%r9 %r9d %r9w %r9b

%r10 %r10d %r10w %r10b

%r11 %r11d %r11w %r11b

%r12 %r12d %r12w %r12b

%r13 %r13d %r13w %r13b

%r14 %r14d %r14w %r14b

%r15 %r15d %r15w %r15b

Source: https://cs.brown.edu/courses/cs033/docs/guides/x64_cheatsheet.pdf

23

ISE 407 Lecture 1 24

More Complex Example

1 function f(x::Array{Float64,1}, stride::Int, limit::Int)

2 s = 0

3 i = 0

4 while(true)

5 i += stride

6 if (i > limit)

7 break

8 end

9 @inbounds s=x[i]

10 end

11 return s

12 end

24

ISE 407 Lecture 1 25

More Complex Example (cont’d)

julia> @code_native debuginfo=:none f(x, 2, length(x))

1 .text

2 cmpq %rcx, %rdx

3 jle L17

4 movq $0, (%rdi)

5 movb $2, %dl

6 xorl %eax, %eax

7 retq

8 L17:

9 xorl %r8d, %r8d

10 nopw %cs:(%rax,%rax)

11 nop

12 L32:

13 addq %rdx, %r8

14 leaq (%rdx,%r8), %rax

15 cmpq %rcx, %rax

16 jle L32

17 movq (%rsi), %rax

18 movq -8(%rax,%r8,8), %rax

19 movq %rax, (%rdi)

20 movb $1, %dl

21 xorl %eax, %eax

22 retq

23 nopl (%rax)

25

ISE 407 Lecture 1 26

How Numbers Are Represented

• Recall from 418 that numbers are represented in the floating point
system.

• The floating-point numbers F are a subset of the real numbers.

• A particular floating-point number system F is characterized by four
parameters:

– the base β,
– the precision t,
– the exponent range [L,U].

• Each floating-point number x ∈ F has a value

x = ±
(
d1
β

+
d2
β2

+ · · ·+ dt
βt

)
βe,

where the integers 0 ≤ di ≤ β − 1 for 1 ≤ i ≤ t and L ≤ e ≤ U .

• Only numbers of this form can be represented and this can have strange
consequences.

26

ISE 407 Lecture 1 27

IEEE 754

• The modern implementation of the floating point number system is
specified in IEEE 754.

• There are a lot of technical details in the actual storage and these differ
slightly from the above description.

• We always have β = 2 (everything is stored in binary format).

– Single Precision (32 bit, 4 bytes): t = 24, exponent range ≈ [−8, 8]
– Double Precision (64 bits, 8 bytes): t = 53, exponent range ≈

[−11, 11]

• The set F is not a continuum, or even an infinite set.

• The numbers are not equally spaced throughout their range.

Source: Forsythe, Malcolm, and Moler

27

ISE 407 Lecture 1 28

Numbers in Julia

Julia has a very robust set of numerical types, including complex and
rational.

Source: docs.julialang.org/en/v1/manual/integers-and-floating-point-numbers/

28

ISE 407 Lecture 1 29

Machine Epsilon

• It is simple to obtain the machine epsilon value for a given float type.

julia> eps(Float32)

1.1920929f-7

julia> eps(Float64)

2.220446049250313e-16

• This is just computed as the smallest difference between any two floating
point numbers of the specified type.

29

ISE 407 Lecture 1 30

Execution of a Program

• In a simple architecture, one instruction is executed per time step (called
a CPU cycle).

• The speed of computation is (partially) determined by the CPU frequency,
which is the number of cycles per second.

• The frequency is limited by the physics of the device (heat dissipation,
etc.).

• The simplest instructions amount to

– “Move this data from here to there” (possibly masking certain bits or
rotating the bits in the process).

– “Look for the next instruction here”.

• From this basic kind of instruction, we can derive all the things a modern
computer can do.

• Most modern architectures have complex instruction sets and some
instructions take multiple cycles to execute.

30

ISE 407 Lecture 1 31

Higher-Level Instructions

• Data handling and memory operations

– Put a value in a register
– Move data from memory to a register or vice versa
– Read or write data from hardware devices

• Arithmetic and logic

– Add, subtract, multiply, divide.
– Bitwise operations (conjunction/disjunction).
– Comparison

• Control flow

– Branch
– Conditionally branch
– Indirectly branch

Source: en.wikipedia.org/wiki/Instruction_set

31

ISE 407 Lecture 1 32

Modern Processors, Pipelining, and Vectorization

• On a modern computer, instructions typically take multiple cycles.

• However, the CPU may be able to overlap execution, starting a new
instruction before the old one is finished.

• This process is called pipelining.

• Certain instruction can also operate simultaneously on 4 64-bit
integers/floats at a time.

• This creates an additional source of parallelism.

• Therefore, we have to take into account both

– latency (how many cycles the instruction takes to complete) and
– (reciprocal) throughput (average number of instructions per cycle)

Source: https://biojulia.net/post/hardware/

32

ISE 407 Lecture 1 33

Instruction Speeds in Practice

Instruction Latency Reciprocal throughput

move data 1 0.25

and/or/xor 1 0.25

test/compare 1 0.25

do nothing 1 0.25

int add/subtract 1 0.25

bitshift 1 0.5

float multiplication 5 0.5

vector int and/or/xor 1 0.5

vector int add/sub 1 0.5

vector float add/sub 4 0.5

vector float multiplic. 5 0.5

lea 3 1

int multiplic 3 1

float add/sub 3 1

float multiplic. 5 1

float division 15 5

vector float division 13 8

integer division 50 40

Source: https://biojulia.net/post/hardware/

33

ISE 407 Lecture 1 34

Moving Data

• As we have seen, CPUs can only operate on data that resides in a limited
number of registers.

• We must therefore be constantly moving data from where it resides into
the register (and then move the result of computation back out).

• One of the most important drivers of the speed of computation is how
efficiently this can be done.

• There is a complex hierarchy of hardware devices whose goal is to move
data as efficiently as possible to the registers and back out again.

34

