Computational Optimization
ISE 407

Lecture 1

Dr. Ted Ralphs

ISE 407 Lecture 1 1

Reading for this Lecture

e “How Computers Work,” R. Young
e “The Elements of Computing Systems,” N. Nisan and S. Schocken
e “Introduction to High Performance Computing”, V. Eijkhout, Chapter 1.

e “Introduction to High Performance Computing for Scientists and
Engineers,” G. Hager and G. Wellein, Chapter 1.

ISE 407 Lecture 1

What is a Computer System?

Computer Systems

N

Hardware Software
_ . Operatmg Shared Application
Memory OOeEE0TE Connections oraome - - -
Memory Processo 15 Interconnections Storage Environment Libraries Cods
=N))
T e 0 ErEIMming . ata . I
L .,_I:'r' I N 03 Languags Compiler Structiras Algorithms Implemesntation

Figure 1: High Level View of a Computer System

ISE 407 Lecture 1 3

What Are Computational Methods?

e Computational methods are

— Algorithms based on logical procedures rooted in mathematics.
— Generally speaking, they are meant to be implemented on a computer.

e Such methods are usually stated initially in the high-level language of
mathematics.

e This class is about translating mathematics into abstract procedures,
then a programming language, and finally into machine instructions.

e The translation to a programming language must be done (primarily) by
a human, whereas later stages are performed automatically.

e Doing this well requires an understanding of how computer systems work.

ISE 407 Lecture 1 4

What Does a Computer System Really Do?

e A computer system

— connects to physical input sources (keyboard, sensors, and other
peripherals) to obtain data (instructions as well as raw input).

— based on the instructions, manipulates the raw input through a
sequence of logical operations to produce output.

— sends the output to peripherals (screen, printer) that convert the
output back into a physical source.

e Two basic components form the core of the system

— The central processing unit (CPU) performs the logical operations.
— The storage system connects to input and output devices and to the
CPU to provide the input to and receive the output from the CPU.

e Loosely speaking, the operating system provides a range of “services.”

e These allow human programmers and users to interact with and control
the computer in a more natural fashion.

e Naturally, this is all somewhat over-simplified.

ISE 407 Lecture 1

=% —]W -
Chaglen 9,12

Hierarchy of Abstractions

atratrac -rﬂ:dm
High-Laved
& Chaptees 10-11
Oparating Systom l
atmiract miledace
Virtuad WM Translator
Software Maching Chagten 7-8 l
hierarchy —
abatract e soe
Assambly
Langpang
Assambber ‘
i
L J
abatrac! Modsce
Computir
Maching Achieciur
-
W | crosenas l Hardware
hierarchy
atmlract irtedace
Hardware Gate Logic
Plationm P
absirad mefacn
Elncincal
Chips and Engnoaring
Logic Gates

Source: Nisan and Schocken

ISE 407 Lecture 1 6

Boolean Logic

e The basic computational unit of a computer is the /ogic gate.

e An electronic version of such a gate can be built a small number (between
2 and b5) transistors.

e Starting from basic logic gates, it is possible to build chips that perform
ever more sophisticated calculations.

e Underlying all of this computation is simple Boolean logic.

e Basic logic gates

— AND
- OR
— NOT

ISE 407 Lecture 1

Type Distinctive shape

w -

NOT _Do_

Basic Logic Gates

Rectangular shape

Boolean algebra between A &

B Truth table

INPUT | OUTPUT
A B |AANDB
00 0
01 0
1.0 0
11 1

INPUT | OUTPUT
AlB AORB
00 0
01 1
1.0 1
11 1

A+ B

INPUT | OUTPUT

— A MOT A

0 1
1 0

Source: https:/en.wikipedia.org/wiki/Logic_gate

ISE 407 Lecture 1

Composite Gates

INPUT OUTPUT
A B ANANDB

0 1
NAND

Ll?l)
| |
g
7
g

0
of1)] 1
(o) 1
1

1 0

INPUT | QUTPUT
A | B ANORB

0|0 1

NOR

— b 01

0
1(0 0
1 0

INPUT | QUTPUT
A B AXORB

0 0

XOR A$ B

0

01 1
1(0 1
1(1 0

INPUT OUTPUT
A | B AXNORB

—_— = - 0|0
XNOR 1 ;

v vy

1
01 0
1(0 0
1(1 1

Source: https://en.wikipedia.org/wiki/Logic_gate

ISE 407 Lecture 1 o

Boolean Arithmetic

e From basic logic gates, we can straightforwardly build chips that do
arithmetic.

e The addition of two binary numbers can be reduced to sequences of
additions of three bits (the third bit is the carry).

e Most other arithmetic operations can be reduced to sequences of
additions.

e Thus, from these basic elements, we can build a chip that does most of
the things we want it to do.

ISE 407 Lecture 1 10

CPU

Figure 1 Central Processing Unit

e Modern CPUs combine billions of such logic gates in a complex physical
manifestation of these ideas.

e CPU stands for “central processing unit,” but what we call a CPU is
more like a “"CPU chip.”

e The chip may have multiple “compute cores” for doing computations in
parallel.

e The CPU has other sub-parts, such as a control unit, arithmetic logic
unit, memory management unit, clock, etc.

ISE 407 Lecture 1

11

Main memory

Memory
interface

Basic CPU Architecture

L2 unified cache

INT reg. file

shift
mask

INT
op

LD

ST

Q
L1 data 3
= |
cache =
o
o) |
£
@
=
Q
-
Q
3 p—
o
o
L1 instr. W
— | cache ';_7

Source

: Hager and Wellein, Figure 1.2

FP reg. file

FP
mult

FP
add

ISE 407 Lecture 1

12

How a CPU Works

S
s (e s| |e s| (e s| |e

Arithmetic
Logic Control Unit
Unit
(ALU)

s e

set S 4
11000111 m Instruction
ena _Address

Watch this: https://www.youtube.com/watch?v=cNN_tTXABUA

Memory
Address

to RAM

ISE 407 Lecture 1

13

Basic Architecture of a Computer

CPU, CPU;
- ArSB

RAM

SATA

PCI-E USB

Figure 2: Basic architecture of a modern computer

Basic elements include

e CPU (Central processing unit)
e RAM (Random access memory)
e Storage

e Peripherals

Source: http://lwn.net/Articles/250967/

ISE 407 Lecture 1 14

RAM

RAM stands for random access memory (as opposed to older style
memory, like magnetic tape, that had to be accessed linearly).

Typical “burst” communication rate is around 10 GB/s
Size varies from 4-32 GB
It is temporary memory

It keeps data and instructions for CPU

ISE 407 Lecture 1

15

How RAM works

Memory is divided into slots that
store a fixed number of bits.

Each slot gets an address.

To retrieve data, you must have
the address.

We'll see later that RAM s
supplemented by smaller, faster
blocks of memory called cache.

Address Value
0x00 01001010
0x01 10111010
0x02 01011111
0x03 00100100
0x04 01000100
0x05 10100000
0x06 01110100
0x07 01101111
0x08 10111011
OxFE 11011110
OxFF 10111011

ISE 407 Lecture 1 16

Storage Hierarchy

e There is a large gap between processor speeds and memory speeds.

e |t is possible to produce faster memory, but it's expensive and takes
much more physical space.

e As a compromise, we add small fast memory, called cache, for storing
the most important data.

e This a crucial driver of performance and we'll delve further into it in
Lecture 2.

A pe—— |
Registers

Bus | |

X g (L Cache |

| Processor

. L2 Cache | |More storage
Faster ' |space

| L3 Cache*

L1i Cache e PR J|

L1d Cache <— CPU Core | Page File Hard Disk | 5

Source: http://lwn.net/Articles/250967/

ISE 407 Lecture 1 17

Other Technologies: GPU

GPUs are not new, but are now more general-purpose.
They can be programmed in C (with some restrictions).

Provide the ability to run blocks of many synchronized parallel threads
executing the same “kernel.”

Blocks have access to small, fast shared memory and slow global memory.

Amount of global memory per thread is much smaller than CPU.

ISE 407 Lecture 1 18

Other Technologies: FPGA

" pp—
i “‘k\“‘“\\\n\\“\\“\\“

-
2 uuun!“""
-

e Field-programmable gate arrays (FPGASs) are integrated circuits designed
to be configured by a customer or a designer after manufacturing.

e They essentially CPUs custom-designed for certain workloads.

ISE 407 Lecture 1 19

Other Technologies: Co-processors

%l!!“

[:jﬁj-¢

0| cmommc |

O aoarc |
? t‘-.i i

e Xeon Phi is similar to a GPU, but with a more general instruction set.

e “Essentially a 60-core SMP chip where each core has a dedicated 512-bit
wide SSE (Streaming SIMD Extensions) vector unit” —Dr. Dobbs

e Got it?

ISE 407 Lecture 1 20

Machine Language

e The native language spoken by a computer is a sequence of Os and 1s.

e These are divided into chunks that can be interpreted as instructions,
memory addresses, numbers, or other data units.

e The chip provides a basic set of instructions that it can understand.
e This is called machine language.

e |t can be translated into a more human readable form known as assembly
language.

e In the early history of computing, all programming was done in assembly
language.

e This is the first of many layers that exist to translate human thought
into action by the computer.

[L\

ISE 407 Lecture 1 21

Simple Example

function f(x::Int)
x += 5

end

julia> Q@code_native debuginfo=:none f(10)

.text

leaq 5(fhrdi), ‘rax
retq

nopw hes: (rax, hirax)
nop

The instruction set used here is the x86-64 instruction set that is most
commonly in use on modern computers.

ISE 407 Lecture 1 22

Registers

e The codes beginning with with % on the last slide are names for the
available registers.

e In the x86-64 architecture, the registers hold 64-bit, but the lower bits
can be used as 32-, 16-, or 8-bit registers.

e Certain registers play special roles, mainly by convention.

— %rax is used to store a function's return value.

— Jrsp is the stack pointer.

— Y%rdi, %rsi, %rdx, %rcx, %r8, and %r9 are the first six integer or
pointer arguments to a function.

ISE 407 Lecture 1 23

Registers

8-byte register | Bytes 0-3 Bytes 0-1 Byte 0
Jrax lheax %hax %hal
hrcx hecx hcx %cl
%rdx %edx %dx %dl
%rbx %ebx 7bx %bl
fhrsi hesi %si %sil
%rdi %edi %di %dil
hrsp hesp hsp hspl
%hrbp %ebp %bp %bpl
%r8 %r8d %r8w %r8b
%r9 %rod %row %r9b
%ri10 %ri10d %ri10w %r10b
%riil %rild hrilw %rilb
%ri2 %ri2d %hril2w %r12b
%ri3 %ri13d %ri3w %ri13b
%rid %ridd hrildw %r14db
%rl5 %r15d %r15w %r15b

Source: https://cs.brown.edu/courses/cs033/docs/guides/x64_cheatsheet.pdf

© o0 N O Ot e W N

— = =
N o= O

ISE 407 Lecture 1

24

function f(x::Array{Float64,1}, stride::Int, limit::Int)

end

More Complex Example

s =0
i=20
while(true)

1 += stride
if (1 > limit)
break
end
@inbounds s=x[i]
end
return s

ISE 407 Lecture 1

More Complex Example (cont’d)

julia> O@code_native debuginfo=:none f(x, 2, length(x))

O 00 O O W N+

[N T N T N e T e G) g
W N OO 00O Uik WD —=O

.text
cmpq hrex, Jrdx
jle L17
movq $0, (%rdi)
movb $2, %dl
xorl fheax, theax
retq

L17:
xorl %r8d, %r8d
nopw %cs: (Yrax,%rax)
nop

L32:
addq %rdx, %r8
leaq (%rdx,%r8), Y%rax
cmpq hrex, jhrax
jle 132
movq (%rsi), %rax
movq -8(%rax,%r8,8), %rax
movq hrax, (%rdi)
movb $1, %4l
xorl heax, theax
retq

nopl

(Yirax)

ISE 407 Lecture 1 26

How Numbers Are Represented

e Recall from 418 that numbers are represented in the floating point
system.

e The floating-point numbers F' are a subset of the real numbers.

e A particular floating-point number system F' is characterized by four
parameters:

— the base 3,
— the precision t,
— the exponent range [L, U].

e Each floating-point number & € F' has a value

di do >
r ==+ + 5+ 5%,
(5 3 Bt
where the integers 0 < d; < [—1forl1 <i:<tand L <e <U.

e Only numbers of this form can be represented and this can have strange
consequences.

ISE 407 Lecture 1 27

IEEE 754

e The modern implementation of the floating point number system is
specified in [EEE 754.

e There are a lot of technical details in the actual storage and these differ
slightly from the above description.

e We always have 3 = 2 (everything is stored in binary format).

— Single Precision (32 bit, 4 bytes): t = 24, exponent range ~ [—8, §]
— Double Precision (64 bits, 8 bytes): t = 53, exponent range =
(—11,11]

e [heset I is not a continuum, or even an infinite set.

e The numbers are not equally spaced throughout their range.

R R e

-2 -1 -1-10 131 1 2

Fig. 2.1. The floating-point number system for § =2, f=3,L = —1,
U=2

Source: Forsythe, Malcolm, and Moler

ISE 407 Lecture 1

28

Numbers in Julia

Julia has a very robust set of numerical types, including complex and

rational.

¢ Integer types:

Type
Int8
UInt8
Int16
UInt16
Int32
UInt32
Int64
UInt64
Int128
UInt128

Bool

Signed? Number of bits Smallest value Largest value

v 8 =207 2"7-1
8 0 278-1
v 16 -2715 2715-1
16 0 2716-1
v 32 -2731 2731-1
32 0 2732-1
v 64 -2763 2763-1
64 0 2"64-1
v 128 -27127 27127-1
128 0 27128-1
N/A 8 false (0) true (1)

s Floating-point types:

Type
Float16
Float32

Float64

Source: docs. julialang

Precision Number of bits

half 16
single 32
double 64

.org/en/vl/manual/integers-and-floating-point-numbers/

ISE 407 Lecture 1 29

Machine Epsilon

e |t is simple to obtain the machine epsilon value for a given float type.

julia> eps(Float32)
1.1920929f-7

julia> eps(Float64)

2.220446049250313e-16

e This is just computed as the smallest difference between any two floating
point numbers of the specified type.

ISE 407 Lecture 1 30

Execution of a Program

e In a simple architecture, one instruction is executed per time step (called
a CPU cycle).

e The speed of computation is (partially) determined by the CPU frequency,
which is the number of cycles per second.

e The frequency is limited by the physics of the device (heat dissipation,
etc.).

e The simplest instructions amount to

— “Move this data from here to there” (possibly masking certain bits or
rotating the bits in the process).
— “Look for the next instruction here”.

e From this basic kind of instruction, we can derive all the things a modern
computer can do.

e Most modern architectures have complex instruction sets and some
instructions take multiple cycles to execute.

ISE 407 Lecture 1

31

Higher-Level Instructions

e Data handling and memory operations

— Put a value in a register
— Move data from memory to a register or vice versa
— Read or write data from hardware devices

e Arithmetic and logic

— Add, subtract, multiply, divide.
— Bitwise operations (conjunction/disjunction).
— Comparison

e Control flow

— Branch
— Conditionally branch
— Indirectly branch

Source: en.wikipedia.org/wiki/Instruction_set

ISE 407 Lecture 1 32

Modern Processors, Pipelining, and Vectorization

e On a modern computer, instructions typically take multiple cycles.

e However, the CPU may be able to overlap execution, starting a new
instruction before the old one is finished.

e This process is called pipelining.

e Certain instruction can also operate simultaneously on 4 64-bit
integers/floats at a time.

e This creates an additional source of parallelism.
e [herefore, we have to take into account both

— latency (how many cycles the instruction takes to complete) and
— (reciprocal) throughput (average number of instructions per cycle)

Source: https://biojulia.net/post/hardware/

ISE 407 Lecture 1

Instruction Speeds in Practice

Instruction Latency Reciprocal throughput
move data 1 0.25
and/or /xor 1 0.25
test/compare 1 0.25
do nothing 1 0.25
int add /subtract 1 0.25
bitshift 1 0.5
float multiplication 5 0.5
vector int and/or/xor 1 0.5
vector int add/sub 1 0.5
vector float add/sub 4 0.5
vector float multiplic. 5 0.5
lea 3 1
int multiplic 3 1
float add/sub 3 1
float multiplic. 5 1
float division 15 5
vector float division 13 8
integer division 50 40

Source: https://biojulia.net/post/hardware/

ISE 407 Lecture 1 34

Moving Data

e As we have seen, CPUs can only operate on data that resides in a limited
number of registers.

e We must therefore be constantly moving data from where it resides into
the register (and then move the result of computation back out).

e One of the most important drivers of the speed of computation is how
efficiently this can be done.

e There is a complex hierarchy of hardware devices whose goal is to move
data as efficiently as possible to the registers and back out again.

