Problem Set 3

ISE 407 — Computational Methods in Optimization
Due: October 11, 2019

Dr. Ralphs

1.

(a)

Implement a simple sparse matrix class in C++ based on the compressed sparse
row/column (CSR/CSC) format. Your class should allow for the user to choose
whether the matrix is to be stored in CSR, CSC, or dense format. Your class
should should implement the interface specified in a header file SparseMatrix.h
in a file SparseMatrix.cpp. The specified implementation has a constructor as
follows.

SparseMatrix(const int nCols,
const int nRows,
matrixFormat f,
const double density,
const bool initRandom);

The matrixFormat type is an enum that indicates how the matrix should be
stored. The initRandom parameter indicates whether the matrix should be ran-
domly initialized and the density parameter is used in case of such random ini-
tialization or to indicate how much much space tpo allocate for nonzeros. You
should have at least one method for adding elements/rows/columns to the ma-
trix. It should be possible to do this dynamically (i.e., the size of the matrix
should not be fixed).

Override the * operator so that two instances of your matrix class can be multi-
plied as in Matlab. It should be possible to multiply matrices of different formats.
You should suypport dense*dense, CSR*CSC, CSC*CSC, and CSR*CSR.

Override the << operator to provide a way of printing the matrix.

Use the provided driver to do some computational experiments comparing the
empirical running time for multiplying random matrices of different densities
stored both in sparse and dense formats. Study the empirical running time
function for different densities, sizes, and data structures and report on your
findings.

2. Define a linear array of size n with a bus to be a linear array augmented with a single

(a)

(b)

global bus. Every processor is connected to the bus and in one unit of time, one
processor can write to the bus and all other processors can read from it. This allows
broadcasting in unit time, but only of one data word per time step.

State an efficient algorithm to sum n values, initially distributed one per proces-
sor, on such an architecture. What is the parallel cost of the algorithm? Compare
to the case of finding the sum of n values on a regular linear array without a bus.

Can the parallel cost of the algorithm be improved by increasing the amount of
data initially allocated to each processor?



3. Miller and Boxer, Chapter 5, Problem 1.
4. Miller and Boxer, Chapter 5, Problem 2.

5. Show that 3-COLOR is NP-complete by a reduction from 3-SAT and the decision
problem in part (b) is therefore NP-complete. The initial construction goes as fol-
lows. Given a set of m clauses and n boolean variables z1, ..., z, representing truth
assignments, we construct a graph G = (V, E) as follows. The set V consists of a
vertex for each variable and a vertex for the negation of each variable, five vertices
associated with each clause, and three special vertices: TRUE, FALSE, and RED.
The edges of the graph are of two types: “literal” edges that are independent of the
clauses and “clause” edges the depend on the clauses. The literal edges form a triangle
on the special vertices and also a triangle on the vertices corresponding to z;, z;, and
RED fori=1,...,n.



