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Reading for This Lecture

• Bertsimas 4.4-4.6
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More on Complementary Slackness

• Recall the complementary slackness conditions,

pT (Ax− b) = 0,

(cT − pTA)x = 0.

• If the primal is in standard form, then any feasible primal solution satisfies
the first condition.

• If the dual is in standard form, then any feasible dual solution satisfies
the second condition.

• Typically, we only need to worry about satisfying the second condition,
which is enforced by the simplex method.
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Dual Variables and Marginal Costs

• Consider an LP in standard form with a nondegenerate, optimal basic
feasible solution x∗ and optimal basis B.

• Suppose we wish to perturb the right hand side slightly by replacing b
with b + d.

• As long as d is “small enough,” we have B−1(b + d) > 0 and B is still
an optimal basis.

• The optimal cost of the perturbed problem is

cT
BB−1(b + d) = pT (b + d)

• This means that the optimal cost changes by pTd.

• Hence, we can interpret the optimal dual prices as the marginal cost of
changing the right hand side of the ith equation.
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Economic Interpretation

• The dual prices, or shadow prices can allow us to put a value on resources.

• Consider the simple product mix problem from the Lecture 10.

• By examining the dual variable for the production hours constraint, we
can determine the value of an extra hour of production time.

• We can also determine the maximum amount we would be willing to pay
to borrow extra cash.

• Note that the reduced costs are the shadow prices associated with the
nonnegativity constraints.
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Economic Interpretation of Optimality

• Consider again the product mix example from the Lecture 9.

• Using the shadow prices, we can determine how much each product
“costs” in terms of its constituent resources.

• The reduced cost of a product is the difference between its selling price
and the (implicit) cost of the constituent resources.

• If we discover a product whose “cost” is less than its selling price, we try
to manufacture more of that product to increase profit.

• With the new product mix, the demand for various resources is changed
and their prices are adjusted.

• We continue until there is no product with cost less than its selling price.

• This is the same as having the reduced costs nonnegative.

• Complementary slackness says that we should only manufacture products
for which cost and selling price are equal.

• This can be viewed as a sort of multi-round auction.
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Shadow Prices in AMPL

Again, recall the model from the Lecture 10.

ampl: model simple.mod
ampl: solve;
CPLEX 7.0.0: optimal solution; objective 105000
2 simplex iterations (0 in phase I)
ampl: display hours;
hours = 0.5

• This tells us that the optimal dual value of the hours constraint is 0.5.

• Increasing the hours by 2000 will increase profit by (2000)(0.5) = $1000.

• Hence, we should be willing to pay up to $.50/hour for additional hours
(as long as the solution remains feasible).
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The Dual Simplex Method

• We now present a dual version of the simplex method in tableau form.

• Recall the simplex tableau

−cT
BxB c̄1 · · · c̄n

xB(1)
... B−1A1 · · · B−1An

xB(m)

• In the dual simplex method, the basic variables are allowed to take on
negative values, but we keep the reduced costs nonnegative.
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Choosing the Pivot Element

• The pivot row is any row in which the value of the basic variable is
negative.

• To determine the pivot column, we perform a ratio test.

• The ratio test determines the largest step length that will maintain dual
feasibility, i.e., keep the reduced costs nonnegative.

• Consider the pivot row v—if vi ≥ 0∀i, then the optimal dual cost is +∞
(the primal problem is infeasible).

• Otherwise, if vi < 0, compute the ratio − c̄i
vi

.

• The pivot column is one of the columns with the minimum ratio.

• Pivoting is done in exactly the same way as before.
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Comments on Dual Simplex

• Note that a given basis determines both a unique solution to the primal
and a unique solution to the dual.

xB = B−1b

pT = cT
BB−1

• Both the primal and dual solutions are basic and either one, or both,
may be feasible.

• If they are both feasible, then they are both optimal.

• Both versions of the simplex method go from one adjacent basic solution
to another until reaching optimality.

• Both versions either terminate in a finite number of steps or cycle.

• The dual simplex method is not exactly the same as the simplex method
applied to the dual.
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Why Use Dual Simplex

• Note that when we can’t find a primal feasible basis, we may be able to
find a dual feasible basis.

• For a primal problem in standard form with nonnegative costs, we always
have a dual feasible solution.

• Suppose we have an optimal basis and we change the right hand side so
that the basis becomes primal infeasible.

• The basis will still be dual feasible and so we can continue on with the
dual simplex method.

• Note that we can switch back and forth between the two methods.
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Dual Degeneracy

• Consider an LP in standard form.

• Recall that the reduced costs are the slack in the dual constraints.

• The reduced costs that are zero correspond to binding dual constraints.

• A dual solution is degenerate if and only if the reduced cost of some
nonbasic variable is zero.

• Primal and dual degeneracy are not connected—two bases can lead to
the same primal solution, but different dual solutions and vice versa.

• Two bases can even lead to the same primal solution and different dual
solutions, one of which is feasible and the other of which is not.

• Dual degeneracy can also cause problems.
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Geometric Interpretation of Optimality

• Suppose we have a problem in inequality form, so that the dual is in
standard form, and a basis B.

• If I is the index set of binding constraints at the corresponding
(nondegenerate) BFS, and we enforce complementary slackness, then
dual feasibility is equivalent to

∑

i∈I

piai = c.

• In other words, the objective function must be a nonnegative combination
of the binding constraints.

• We can easily picture this graphically.
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Farkas’ Lemma

Proposition 1. Let A ∈ Rm×n and b ∈ Rm be given. Then exactly one
of the following holds:

1. ∃x ≥ 0 such that Ax = b.

2. ∃p such that pTA ≥ 0T and pT b < 0.

• This is closely related to the geometric interpretation of optimality just
discussed.

• There are many equivalent version of Farkas’ Lemma from which we can
derive optimality conditions.

• Note that when the dual simplex algorithm stops because of infeasibility,
then the pivot row provides a proof.
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An Asset Pricing Model

• Suppose we are in a market that operates for one period and in which n
different assets are traded.

• At the end of the period, the market can be in m different possible
states.

• Each asset i has a given price pi at the beginning of the period.

• We have a payoff matrix R which determines the price rsi of asset i at
the end of the period if the market is in state s.

• Note that we are allowed to sell short, which means selling some quantity
of asset i at the beginning of the period and buying it back at the end.

• Asset pricing models typically try to determine prices for which there are
no arbitrage opportunities.

• This means there is no portfolio with a negative cost, but a positive
return in every state.
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Applying Linear Programming

• We can develop a linear program to look for arbitrage opportunities.

• Suppose we let the vector x represent our portfolio at the beginning of
the period.

• The condition that our return should be positive in every state is simply

Rx ≥ 0

• The condition that the portfolio has negative cost is simply

pTx ≥ 0

• Hence, we can simply solve the LP min{pTx|Rx ≥ 0}.
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Asset Pricing Using Farkas’ Lemma

• The absence of arbitrage is equivalent to the condition that Rx ≥ 0 ⇒
pTx ≥ 0.

• This is the same as the LP above have a nonnegative optimal solution.

• By Farkas’ Lemma, the absence of arbitrage opportunities is equivalent
to the existence of a vector of nonnegative state prices q such that

p = qTR

• Hence, if we determine such state prices and use them to value existing
assets, we eliminate the possibility of arbitrage.

• This is a key concept in modern finance theory.
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